Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 22(31): 315301, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21734338

RESUMO

Large-area hard magnetic L1(0)-FePt nanopatterns with out-of-plane texture were fabricated by using a top-down approach. For the fabrication process, ultraviolet nanoimprint lithography (UV-NIL) in combination with inductively coupled plasma reactive Ar-ion etching was used. By this technique a continuous L1(0)-Fe(51)Pt(49) film was nanostructured into a regular arrangement of nanodots over an area of 4 mm(2). The dot dimension and distribution was specified by the stamp, resulting in a dot size of 60 nm and a periodicity of 150 nm. For the large-scale L1(0)-FePt nanopatterns, huge coercivities up to 4.31 T could be achieved. By means of magnetic force microscopy it could be verified that the nanodots were magnetically decoupled from each other and occurred in the single-domain state with perpendicular magnetization.

2.
Opt Lett ; 35(12): 1950-2, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20548349

RESUMO

A quantum network that consists of several components should ideally work on a single physical platform. Neutral alkali atoms have the potential to be very well suited for this purpose due to their electronic structure, which involves long-lived nuclear spins and very sensitive highly excited Rydberg states. In this Letter, we describe a fabrication method based on quartz glass to structure arbitrary shapes of microscopic vapor cells. We show that the usual spectroscopic properties known from macroscopic vapor cells are almost unaffected by the strong confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA