Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 480(18): 1459-1473, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702403

RESUMO

Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous ß- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Animais , Citosol , Bicamadas Lipídicas , Proteínas de Membrana/genética , Mamíferos
2.
Am J Physiol Cell Physiol ; 323(6): C1697-C1703, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280391

RESUMO

All cell types must maintain homeostasis under periods of stress. To prevent the catastrophic effects of stress, all cell types also respond to stress by inducing protective pathways. Within the cell, the endoplasmic reticulum (ER) is exquisitely stress-sensitive, primarily because this organelle folds, posttranslationally processes, and sorts one-third of the proteome. In the 1990s, a specialized ER stress response pathway was discovered, the unfolded protein response (UPR), which specifically protects the ER from damaged proteins and toxic chemicals. Not surprisingly, UPR-dependent responses are essential to maintain the function and viability of cells continuously exposed to stress, such as those in the kidney, which have high metabolic demands, produce myriad protein assemblies, continuously filter toxins, and synthesize ammonia. In this mini-review, we highlight recent articles that link ER stress and the UPR with acute kidney injury (AKI), a disease that arises in ∼10% of all hospitalized individuals and nearly half of all people admitted to intensive care units. We conclude with a discussion of prospects for treating AKI with emerging drugs that improve ER function.


Assuntos
Injúria Renal Aguda , Estresse do Retículo Endoplasmático , Humanos , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Proteínas/metabolismo
3.
Am J Physiol Cell Physiol ; 322(1): C111-C121, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852210

RESUMO

The mammalian paraoxonases (PONs) have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2, and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in fisher rat thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts before ENaC subunit ubiquitination. As a result of enhanced ENaC subunit ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirects the channel for ER-associated degradation.


Assuntos
Arildialquilfosfatase/metabolismo , Retículo Endoplasmático/metabolismo , Canais Epiteliais de Sódio/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Arildialquilfosfatase/análise , Retículo Endoplasmático/química , Canais Epiteliais de Sódio/análise , Camundongos , Chaperonas Moleculares/análise
4.
Mol Cell Proteomics ; 19(11): 1896-1909, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868373

RESUMO

Studies in the yeast Saccharomyces cerevisiae have helped define mechanisms underlying the activity of the ubiquitin-proteasome system (UPS), uncover the proteasome assembly pathway, and link the UPS to the maintenance of cellular homeostasis. However, the spectrum of UPS substrates is incompletely defined, even though multiple techniques-including MS-have been used. Therefore, we developed a substrate trapping proteomics workflow to identify previously unknown UPS substrates. We first generated a yeast strain with an epitope tagged proteasome subunit to which a proteasome inhibitor could be applied. Parallel experiments utilized inhibitor insensitive strains or strains lacking the tagged subunit. After affinity isolation, enriched proteins were resolved, in-gel digested, and analyzed by high resolution liquid chromatography-tandem MS. A total of 149 proteasome partners were identified, including all 33 proteasome subunits. When we next compared data between inhibitor sensitive and resistant cells, 27 proteasome partners were significantly enriched. Among these proteins were known UPS substrates and proteins that escort ubiquitinated substrates to the proteasome. We also detected Erg25 as a high-confidence partner. Erg25 is a methyl oxidase that converts dimethylzymosterol to zymosterol, a precursor of the plasma membrane sterol, ergosterol. Because Erg25 is a resident of the endoplasmic reticulum (ER) and had not previously been directly characterized as a UPS substrate, we asked whether Erg25 is a target of the ER associated degradation (ERAD) pathway, which most commonly mediates proteasome-dependent destruction of aberrant proteins. As anticipated, Erg25 was ubiquitinated and associated with stalled proteasomes. Further, Erg25 degradation depended on ERAD-associated ubiquitin ligases and was regulated by sterol synthesis. These data expand the cohort of lipid biosynthetic enzymes targeted for ERAD, highlight the role of the UPS in maintaining ER function, and provide a novel tool to uncover other UPS substrates via manipulations of our engineered strain.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Oxigenases de Função Mista/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Ergosterol/biossíntese , Ergosterol/metabolismo , Leupeptinas/farmacologia , Oxigenases de Função Mista/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Ubiquitinação
5.
J Biol Chem ; 293(45): 17582-17592, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228189

RESUMO

The epithelial Na+ channel (ENaC) possesses a large extracellular domain formed by a ß-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, ß, or γ). Removing the γ subunit thumb domain had no effect on Na+ currents when expressed in Xenopus oocytes, but moderately reduced channel surface expression. In contrast, ENaCs lacking the α or ß subunit thumb domain exhibited significantly reduced Na+ currents along with a large reduction in channel surface expression. Moreover, channels lacking an α or γ thumb domain exhibited a diminished Na+ self-inhibition response, whereas this response was retained in channels lacking a ß thumb domain. In turn, deletion of the α thumb domain had no effect on the degradation rate of the immature α subunit as assessed by cycloheximide chase analysis. However, accelerated degradation of the immature ß subunit and mature γ subunit was observed when the ß or γ thumb domain was deleted, respectively. Our results suggest that the thumb domains in each ENaC subunit are required for optimal surface expression in oocytes and that the α and γ thumb domains both have important roles in the channel's inhibitory response to external Na+ Our findings support the notion that the extracellular helical domains serve as functional modules that regulate ENaC biogenesis and activity.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Subunidades Proteicas/metabolismo , Proteólise , Animais , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Expressão Gênica , Humanos , Oócitos/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Xenopus laevis
6.
J Biol Chem ; 292(38): 15927-15938, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28768768

RESUMO

Paraoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum-resident molecular chaperone in Caenorhabditis elegans MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because pon-2 mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na+ channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression. We observed PON-2 expression in aquaporin 2-positive principal cells of the distal nephron of adult human kidney. PON-2 also co-immunoprecipitated with ENaC when co-expressed in HEK293 cells. When PON-2 was co-expressed with ENaC in Xenopus oocytes, ENaC activity was reduced, reflecting a reduction in ENaC surface expression. MEC-6 also reduced ENaC activity when co-expressed in Xenopus oocytes. The PON-2 inhibitory effect was ENaC-specific, as PON-2 had no effect on functional expression of the renal outer medullary potassium channel. PON-2 did not alter the response of ENaC to extracellular Na+, mechanical shear stress, or α-chymotrypsin-mediated proteolysis, suggesting that PON-2 did not alter the regulation of ENaC by these factors. Together, our data suggest that PON-2 regulates ENaC activity by modulating its intracellular trafficking and surface expression.


Assuntos
Arildialquilfosfatase/metabolismo , Canais Epiteliais de Sódio/metabolismo , Adulto , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Canais Epiteliais de Sódio/química , Evolução Molecular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Túbulos Renais Distais/metabolismo , Camundongos , Oócitos/metabolismo , Subunidades Proteicas/metabolismo , Ratos
7.
Am J Physiol Renal Physiol ; 314(3): F483-F492, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187368

RESUMO

Epithelial Na+ channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αßγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, ß-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αßγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na+. The lack of N-linked glycans on the ß-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the ß-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type ß-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the ß-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Processamento de Proteína Pós-Traducional , Sódio/metabolismo , Animais , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Glicosilação , Mecanotransdução Celular , Potenciais da Membrana , Mutação , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Ratos Endogâmicos F344 , Relação Estrutura-Atividade , Tripsina/metabolismo , Xenopus laevis
8.
Curr Opin Nephrol Hypertens ; 27(5): 364-372, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29916852

RESUMO

PURPOSE OF REVIEW: The epithelial sodium channel, ENaC, is responsible for Na reabsorption in several epithelia and is composed of homologous α, ß, and γ subunits. Here, we will explore the differential regulation of ENaC subunits during biogenesis in the early secretory pathway. RECENT FINDINGS: ENaC subunits are subject to numerous posttranslational modifications, including glycosylation, protease activation, disulfide bond formation, palmitoylation, and glycosylation, each of which modulate channel function. For example, glycan addition is regulated by sodium and affects protease activation at the cell surface, protein trafficking, sodium-dependent regulation, and sodium transport. Glycosylation of the α subunit also determines whether a chaperone, Lhs1/GRP170, selects the protein for endoplasmic reticulum-associated degradation. Recognition by this chaperone is blocked by assembly of the ENaC transmembrane domains. In contrast, cytosolic lysines are acetylated in the early secretory pathway, which inhibits ubiquitination and endocytosis at the cell surface. SUMMARY: As sodium reabsorption by ENaC in the distal nephron regulates salt and water homeostasis, ENaC function is critical for human health. Therefore, identifying and characterizing modifiers of ENaC in the early secretory pathway may provide both new therapeutic targets and further our basic understanding of membrane protein assembly and regulation.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/fisiologia , Humanos , Néfrons/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Via Secretória/fisiologia
9.
Biochem J ; 474(3): 357-376, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903760

RESUMO

In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, ß- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not ß- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain-domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/ßENaC constructs in the context of the ENaC heterotrimer. We discovered that the ßENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Canais Epiteliais de Sódio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Expressão Gênica , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
10.
J Biol Chem ; 290(41): 25140-50, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26306034

RESUMO

The extracellular regions of epithelial Na(+) channel subunits are highly ordered structures composed of domains formed by α helices and ß strands. Deletion of the peripheral knuckle domain of the α subunit in the αßγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na(+) (Na(+) self-inhibition). In contrast, deletion of either the ß or γ subunit knuckle domain within the αßγ trimer dramatically reduces epithelial Na(+) channel function and surface expression, and impairs subunit maturation. We systematically mutated individual α subunit knuckle domain residues and assessed functional properties of these mutants. Cysteine substitutions at 14 of 28 residues significantly suppressed Na(+) self-inhibition. The side chains of a cluster of these residues are non-polar and are predicted to be directed toward the palm domain, whereas a group of polar residues are predicted to orient their side chains toward the space between the knuckle and finger domains. Among the mutants causing the greatest suppression of Na(+) self-inhibition were αP521C, αI529C, and αS534C. The introduction of Cys residues at homologous sites within either the ß or γ subunit knuckle domain resulted in little or no change in Na(+) self-inhibition. Our results suggest that multiple residues in the α subunit knuckle domain contribute to the mechanism of Na(+) self-inhibition by interacting with palm and finger domain residues via two separate and chemically distinct motifs.


Assuntos
Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Ratos , Sódio/farmacologia
11.
Physiol Genomics ; 47(6): 198-214, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25759377

RESUMO

Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses.


Assuntos
Proteínas de Membrana/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística , Canais Epiteliais de Sódio , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Dobramento de Proteína , Regulon/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Regulação para Cima/genética
12.
J Biol Chem ; 288(25): 18366-80, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23645669

RESUMO

The epithelial sodium channel, ENaC, plays a critical role in maintaining salt and water homeostasis, and not surprisingly defects in ENaC function are associated with disease. Like many other membrane-spanning proteins, this trimeric protein complex folds and assembles inefficiently in the endoplasmic reticulum (ER), which results in a substantial percentage of the channel being targeted for ER-associated degradation (ERAD). Because the spectrum of factors that facilitates the degradation of ENaC is incomplete, we developed yeast expression systems for each ENaC subunit. We discovered that a conserved Hsp70-like chaperone, Lhs1, is required for maximal turnover of the ENaC α subunit. By expressing Lhs1 ATP binding mutants, we also found that the nucleotide exchange properties of this chaperone are dispensable for ENaC degradation. Consistent with the precipitation of an Lhs1-αENaC complex, Lhs1 holdase activity was instead most likely required to support the ERAD of αENaC. Moreover, a complex containing the mammalian Lhs1 homolog GRP170 and αENaC co-precipitated, and GRP170 also facilitated ENaC degradation in human, HEK293 cells, and in a Xenopus oocyte expression system. In both yeast and higher cell types, the effect of Lhs1 on the ERAD of αENaC was selective for the unglycosylated form of the protein. These data establish the first evidence that Lhs1/Grp170 chaperones can act as mediators of ERAD substrate selection.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Canais Epiteliais de Sódio/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Amilorida/farmacologia , Animais , Retículo Endoplasmático/metabolismo , Canais Epiteliais de Sódio/genética , Feminino , Glicoproteínas/genética , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Humanos , Immunoblotting , Transporte de Íons/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sódio/metabolismo , Xenopus
14.
J Mol Biol ; 436(14): 168418, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38143019

RESUMO

It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.


Assuntos
Retículo Endoplasmático , Homeostase , Chaperonas Moleculares , Dobramento de Proteína , Retículo Endoplasmático/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Animais
15.
bioRxiv ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260467

RESUMO

The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.

16.
Mol Biol Cell ; 35(4): ar59, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446639

RESUMO

GRP170 (Hyou1) is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds nonnative proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of mouse embryonic fibroblasts obtained from mice in which LoxP sites were engineered in the Hyou1 loci (Hyou1LoxP/LoxP). A doxycycline-regulated Cre recombinase was stably introduced into these cells. Induction of Cre resulted in depletion of Grp170 protein which culminated in cell death. As Grp170 levels fell we observed a portion of BiP fractionating with insoluble material, increased binding of BiP to a client with a concomitant reduction in its turnover, and reduced solubility of an aggregation-prone BiP substrate. Consistent with disrupted BiP functions, we observed reactivation of BiP and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and provide hypotheses as to why mutations in the Hyou1 locus are linked to human disease.


Assuntos
Desenvolvimento Embrionário , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Animais , Humanos , Camundongos , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Chaperonas Moleculares/metabolismo
17.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905119

RESUMO

GRP170, a product of the Hyou1 gene, is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds non-native proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of embryonic fibroblasts from mice in which LoxP sites were engineered in the Hyou1 loci ( Hyou1 LoxP/LoxP ). A doxycycline-regulated Cre recombinase was also stably introduced into these cells. Induction of Cre resulted in excision of Hyou1 and depletion of Grp170 protein, culminating in apoptotic cell death. As Grp170 levels fell we observed increased steady-state binding of BiP to a client, slowed degradation of a misfolded BiP substrate, and BiP accumulation in NP40-insoluble fractions. Consistent with disrupted BiP functions, we observed reactivation of BiP storage pools and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and insights into mutations in the Hyou1 locus and human disease.

18.
Nat Struct Mol Biol ; 14(8): 762-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632520

RESUMO

Aquaporin (AQP) folding in the endoplasmic reticulum is characterized by two distinct pathways of membrane insertion that arise from divergent residues within the second transmembrane segment. We now show that in AQP1 these residues (Asn49 and Lys51) interact with Asp185 at the C terminus of TM5 to form a polar, quaternary structural motif that influences multiple stages of folding. Asn49 and Asp185 form an intramolecular hydrogen bond needed for proper helical packing, monomer formation and function. In contrast, Lys51 interacts with Asp185 on an adjacent monomer to stabilize the AQP1 tetramer. Although these residues are unique to AQP1, they share a highly conserved architecture whose functional properties can be transferred to other family members. These findings suggest a general mechanism by which evolutionary divergence of membrane proteins can confer new functional properties via alternative folding pathways that give rise to a common final structure.


Assuntos
Aquaporina 1/química , Motivos de Aminoácidos , Asparagina/química , Asparagina/fisiologia , Humanos , Lisina/química , Lisina/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Dobramento de Proteína
19.
Nat Commun ; 13(1): 1279, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277507

RESUMO

Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.


Assuntos
Culicidae , Flavivirus , Regiões 3' não Traduzidas/genética , Animais , Flavivirus/genética , Genoma Viral , Filogenia , RNA Viral/química , RNA Viral/genética
20.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104250

RESUMO

Molecular chaperones are responsible for maintaining cellular homeostasis, and one such chaperone, GRP170, is an endoplasmic reticulum (ER) resident that oversees both protein biogenesis and quality control. We previously discovered that GRP170 regulates the degradation and assembly of the epithelial sodium channel (ENaC), which reabsorbs sodium in the distal nephron and thereby regulates salt-water homeostasis and blood pressure. To define the role of GRP170 - and, more generally, molecular chaperones in kidney physiology - we developed an inducible, nephron-specific GRP170-KO mouse. Here, we show that GRP170 deficiency causes a dramatic phenotype: profound hypovolemia, hyperaldosteronemia, and dysregulation of ion homeostasis, all of which are associated with the loss of ENaC. Additionally, the GRP170-KO mouse exhibits hallmarks of acute kidney injury (AKI). We further demonstrate that the unfolded protein response (UPR) is activated in the GRP170-deficient mouse. Notably, the UPR is also activated in AKI when originating from various other etiologies, including ischemia, sepsis, glomerulonephritis, nephrotic syndrome, and transplant rejection. Our work establishes the central role of GRP170 in kidney homeostasis and directly links molecular chaperone function to kidney injury.


Assuntos
Injúria Renal Aguda , Proteínas de Choque Térmico HSP70 , Animais , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Chaperonas Moleculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA