Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2210561119, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584294

RESUMO

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.


Assuntos
Dióxido de Carbono , Phaeophyceae , Dióxido de Carbono/metabolismo , Polissacarídeos/metabolismo , Phaeophyceae/metabolismo , Oceanos e Mares
2.
Curr Opin Chem Biol ; 71: 102204, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36155346

RESUMO

Algae synthesise structurally complex glycans to build a protective barrier, the extracellular matrix. One function of matrix glycans is to slow down microorganisms that try to enzymatically enter living algae and degrade and convert their organic carbon back to carbon dioxide. We propose that matrix glycans lock up carbon in the ocean by controlling degradation of organic carbon by bacteria and other microbes not only while algae are alive, but also after death. Data revised in this review shows accumulation of algal glycans in the ocean underscoring the challenge bacteria and other microbes face to breach the glycan barrier with carbohydrate active enzymes. Briefly we also update on methods required to certify the uncertain magnitude and unknown molecular causes of glycan-controlled carbon sequestration in a changing ocean.


Assuntos
Sequestro de Carbono , Polissacarídeos , Polissacarídeos/química , Oceanos e Mares
3.
J Am Soc Mass Spectrom ; 31(6): 1249-1259, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32309938

RESUMO

The connection between monosaccharides influences the structure, solubility, and biological function of carbohydrates. Although tandem mass spectrometry (MS/MS) often enables the compositional identification of carbohydrates, traditional MS/MS fragmentation methods fail to generate abundant cross-ring fragments of intrachain monosaccharides that could reveal carbohydrate connectivity. We examined the potential of helium-charge transfer dissociation (He-CTD) as a method of MS/MS to decipher the connectivity of ß-1,4- and ß-1,3-linked oligosaccharides. In contrast to collision-induced dissociation (CID), He-CTD of isolated oligosaccharide precursors produced both glycosidic and cross-ring cleavages of each monosaccharide. The radical-driven dissociation in He-CTD induced single cleavage events, without consecutive fragmentations, which facilitated structural interpretation. He-CTD of various standards up to a degree of polymerization of 7 showed that ß-1,4- and ß-1,3-linked carbohydrates can be distinguished based on diagnostic 3,5A fragment ions that are characteristic for ß-1,4-linkages. Overall, fragment ion spectra from He-CTD contained sufficient information to infer the connectivity specifically for each glycosidic bond. When testing He-CTD to resolve the order of ß-1,4- and ß-1,3-linkages in mixed-linked oligosaccharide standards, He-CTD spectra sometimes provided less confident assignment of connectivity. Ion mobility spectrometry-mass spectrometry (IMS-MS) of the standards indicated that ambiguity in the He-CTD spectra was caused by isobaric impurities in the mixed-linked oligosaccharides. Radical-driven dissociation induced by He-CTD can thus expand MS/MS to carbohydrate linkage analysis, as demonstrated by the comprehensive fragment ion spectra on native oligosaccharides. The determination of connectivity in true unknowns would benefit from the separation of isobaric precursors, through UPLC or IMS, before linkage determination via He-CTD.


Assuntos
Oligossacarídeos/análise , Oligossacarídeos/química , Espectrometria de Massas em Tandem/métodos , Configuração de Carboidratos , Hélio/química , Isomerismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA