RESUMO
We investigate the properties of a soft glass dual-core photonic crystal fiber for application in multicore waveguiding with balanced gain and loss. Its base material is a phosphate glass in a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system. The separated gain and loss cores are realized with two cores with ytterbium and copper doping of the base phosphate glass. The ytterbium-doped core supports a laser (gain) activity under excitation with a pump at 1000 nm wavelength, while the CuO-doped is responsible for strong attenuation at the same wavelength. We establish conditions for an exact balance between gain and loss and investigate pulse propagation by solving a system of coupled generalized nonlinear Schrödinger equations. We predict two states of light under excitation with hyperbolic secant pulses centered at 1000 nm: 1) linear oscillation of the pulse energy between gain and loss core (P T-symmetry state), with strong power attenuation; 2) retention of the pulse in the excited gain core (broken P T-symmetry), with very modest attenuation. The optimal pulse energy levels were identified to be 100 pJ (first state) and 430 pJ (second state).
RESUMO
We report the generation of a broadband supercontinuum (SC) from 790 to 2900 nm in a tellurite graded-index (GRIN) multimode fiber with a nanostructured core. We study the SC dynamics in different dispersion regimes and observe near-single-mode spatial intensity distribution at high input energy values. Numerical simulations of the (3 + 1)D generalized nonlinear Schrödinger equation are in good agreement with our experiments. Our results open a new avenue for the generation of high-power mid-infrared SC sources in soft-glass fibers.
RESUMO
We systematically present experimental and theoretical results for the dual-wavelength switching of 1560 nm, 75 fs signal pulses (SPs) driven by 1030 nm, and 270 fs control pulses (CPs) in a dual-core fiber (DCF). We demonstrate a switching contrast of 31.9 dB, corresponding to a propagation distance of 14 mm, achieved by launching temporally synchronized SP-CP pairs into the fast core of the DCF with moderate inter-core asymmetry. Our analysis employs a system of three coupled propagation equations to identify the compensation of the asymmetry by nonlinearity as the physical mechanism behind the efficient switching performance.
RESUMO
Fibre bundle (FB)-based endoscopes are indispensable in biology and medical science due to their minimally invasive nature. However, resolution and contrast for fluorescence imaging are limited due to characteristic features of the FBs, such as low numerical aperture (NA) and individual fibre core sizes. In this study, we improved the resolution and contrast of sample fluorescence images acquired using in-house fabricated high-NA FBs by utilising generative adversarial networks (GANs). In order to train our deep learning model, we built an FB-based multifocal structured illumination microscope (MSIM) based on a digital micromirror device (DMD) which improves the resolution and the contrast substantially compared to basic FB-based fluorescence microscopes. After network training, the GAN model, employing image-to-image translation techniques, effectively transformed wide-field images into high-resolution MSIM images without the need for any additional optical hardware. The results demonstrated that GAN-generated outputs significantly enhanced both contrast and resolution compared to the original wide-field images. These findings highlight the potential of GAN-based models trained using MSIM data to enhance resolution and contrast in wide-field imaging for fibre bundle-based fluorescence microscopy. Lay Description: Fibre bundle (FB) endoscopes are essential in biology and medicine but suffer from limited resolution and contrast for fluorescence imaging. Here we improved these limitations using high-NA FBs and generative adversarial networks (GANs). We trained a GAN model with data from an FB-based multifocal structured illumination microscope (MSIM) to enhance resolution and contrast without additional optical hardware. Results showed significant enhancement in contrast and resolution, showcasing the potential of GAN-based models for fibre bundle-based fluorescence microscopy.
RESUMO
For over a decade hollow-core fibers have been used in optical gas sensors in the role of gas cells. However, very few examples of actual real-life applications of those sensors have been demonstrated so far. In this paper, we present a highly-sensitive hollow-core fiber based methane sensor. Mid-infrared distributed feedback interband cascade laser operating near 3.27â µm is used to detect gas inside anti-resonant hollow-core fiber. R(3) line near 3057.71â cm-1 located in ν3 band of methane is targeted. Compact, lens-free optical setup with an all-silica negative curvature hollow-core fiber as the gas cell is demonstrated. Using wavelength modulation spectroscopy and 7.5-m-long fiber the detection limit as low as 1.54 ppbv (at 20 s) is obtained. The demonstrated system is applied for a week-long continuous monitoring of ambient methane and water vapor in atmospheric air at ground level. Diurnal cycles in methane concentrations are observed, what proves the sensor's usability in environmental monitoring.
RESUMO
Phase evolution of soliton and that of first-order sidebands in a fiber laser are investigated by using nonlinear Fourier transform (NFT). Development from dip-type sidebands to peak-type (Kelly) sidebands is presented. The phase relationship between the soliton and the sidebands calculated by the NFT are in good agreement with the average soliton theory. Our results suggest that NFT can be an effective tool for the analysis of laser pulses.
RESUMO
We investigate the polarization dynamics of vector solitons in a fiber laser mode-locked by a saturable absorber (SA). Three types of vector solitons were obtained in the laser, including group velocity locked vector solitons (GVLVS), polarization locked vector solitons (PLVS), and polarization rotation locked vector solitons (PRLVS). Their polarization evolution during intracavity propagation is discussed. Pure vector solitons are obtained from the continuous wave (CW) background by soliton distillation, and the characteristics of the vector solitons without and with distillation are analyzed, respectively. Numerical simulations suggest that the features of vector solitons in a fiber laser could be assemble to those generated in fibers.
RESUMO
We report on the multidimensional characterization of femtosecond pulse nonlinear dynamics in a tellurite glass graded-index multimode fiber. We observed novel multimode dynamics of a quasi-periodic pulse breathing which manifests as a recurrent spectral and temporal compression and elongation enabled by an input power change. This effect can be assigned to the power dependent modification of the distribution of excited modes, which in turn modifies the efficiency of involved nonlinear effects. Our results provide indirect evidence of periodic nonlinear mode coupling occurring in graded-index multimode fibers thanks to the modal four-wave-mixing phase-matched via Kerr-induced dynamic index grating.
RESUMO
We present the pedestal-free thulium doped silica fiber with a large nanostructured core optimized for fiber lasers. The fiber is composed of over 6 thousand thulium doped silica nanorods with a diameter of 71â nm each which form a nanostructured step-index core. We study the influence of non-continuous distribution in nanoscale active areas on gain, beam quality, and fiber laser performance. The proof-of-concept fiber is effectively single mode for wavelength above 1.8 µm. We demonstrate the performance of the fiber in a laser setup pumped at 792â nm. Single mode laser emission with a slope efficiency of 29% at quasi-continuous output power of 4 W with M2 = 1.3 at the emission spectrum 1880-1925 nm is achieved.
RESUMO
In this paper we present all-in fiber tunable devices based on specially designed and optimized high-index photonic crystal fibers filled with nematic liquid crystals. A special host microstructured optical fibers have been designed and manufactured to ensure low-loss index guiding and mode field diameter matching to SMF-28 fiber, ensuring low losses on interconnections with leading in-out FC/PC connectorized pigtails. We present four types of tunable all-fiber devices: tunable retarders with tuning range as high as 20 λ, tunable polarizers with variable axis of polarization and continuously tunable polarization dependent losses, tunable and fully controllable polarization controller and finally indeterministic depolarizer in which depolarization is caused by random thermodynamic process. We also present a cost-effective method to achieve change in the direction of the steering electric field, which was controlled by custom-made programable controllers. Finally, we present a method for effective packaging for the proposed devices.
RESUMO
The objective of the study is to optimize the optical fiber structure for mode-division multiplexing systems using nanostructurization. The nanostructuring technique allows to fabricate fibers with arbitrarily designed (free-form) refractive index distribution based on two glasses. Three optimization schemes have been proposed. The nanostructuring method allows for designing fibers with optical properties similar and even better parameters impossible to produce by other methods. In this proposal, we examined four linearly polarized (LP) few-mode fibers. We report a high effective refractive index difference between modes while maintaining other important parameters for the weakly coupled approach.
RESUMO
We report an experimental study on transmission of orbital angular momentum mode in antiresonant fibers generated with a dedicated all-fiber optical vortex phase mask. The vortex generator can convert Gaussian beam into vortex beams with topological charge l = 1. Generated vortex beam is directly butt-coupled into the antiresonant fiber and propagates over distance of 150â cm. The stability and sensitivity of the transmitted vortex beam on the external perturbations including bending, axial stress, and twisting is investigated. We demonstrate distortion-free vortex propagation for the axial stress force below 0.677 N, a bend radius greater than 10â cm.
RESUMO
Efficient collection of photoluminescence arising from spin dynamics of nitrogen vacancy (NV) centers in diamond is important for practical applications involving precise magnetic field or temperature mapping. These goals may be realized by the integration of nanodiamond particles with optical fibers and volumetric doping of the particles alongside the fiber core. That approach combines the advantages of robust axial fixation of NV diamonds with a direct spatial overlap of their fluorescence with the guided mode of the fiber. We developed a suspended core silicate glass fiber with 750â nm-diameter nanodiamonds located centrally in the 1.5â µm-core cross-section along its axis. The developed fiber probe was tested for its magnetic sensing performance in optically detected magnetic resonance measurements using a 24â cm-long fiber sample, with the NV excitation and fluorescence collection from the far ends of the sample and yielding optical readout contrast of 7% resulting in 0.5 µT·Hz-1/2 magnetic field sensitivity, two orders of magnitude better than in earlier designs. Thanks to its improved fluorescence confinement, the developed probe could find application in magnetic sensing over extended fiber length, magnetic field mapping or gradiometry.
RESUMO
The development of gradient index free-form micro-optic components dedicated to the mid-infrared range is challenging due to the lack of appropriate technology. We propose a method for developing gradient index components for broadband infrared range beyond the transmission window of silicate glass based on nanostructurization using a stack-and-draw fiber drawing technique. A proof-of-concept microlens is developed and verified experimentally in the wavelength range 1.5-4.3â µm. The microlenses are composed of a set of nanorods with a diameter of 940â nm made of a pair of SiO2-PbO-Bi2O3-Ga2O3 based glasses ordered into the preliminary calculated binary pattern. The pattern forms effectively continuous parabolic refractive index distribution for infrared range according to Maxwell-Garnett effective medium model. The development of individual microlenses with a diameter of 118â µm and focal length of 278â µm at the wavelength of 3.75â µm are reported. A large array of 737 microlenses with an individual diameter of 125â µm and focal length of 375â µm is also presented and analyzed.
RESUMO
We investigate the influence of various optical fiber fabrication processes on the fluorescence decay of RE ions commonly used in fiber lasers and amplifiers, i.e. Yb3+, Tm3+ and Ho3+. Optical fiber preforms were prepared using the MCVD method combined with Al2O3 nanoparticle doping and subjected to subsequent heat treatment processes such as preform elongation and fiber drawing. The fluorescence decay of RE ions was measured in multiple stages of optical fiber preparation: in an original preform, in an elongated preform (cane), in a standard fiber, and in an overcladded fiber. It was found that heat treatment processing of the preforms generally leads to a faster fluorescence decay, which can be explained by the diffusion of dopants and clustering of RE ions. The fiber drawing exhibited a greater effect compared to preform elongation, which was ascribed to a faster cooling rate of the process. In general, the heat treatment of RE-doped silica glass preforms leads to the decline of fluorescence decay.
RESUMO
We report the development of a silica glass single-mode polarization-maintaining fiber with birefringence induced by artificial anisotropic glass in the circular core without any external stress zones or structured cladding. The fiber core is composed of silica and germanium-doped silica nanorods ordered in submicrometer interleaved layers. The fiber has a measured cut-off wavelength at 1113â nm, phase birefringence of 0.3×10-4, and an effective mode diameter of 10.5â µm at the wavelength of 1550â nm. The polarization extinction ratio in the fiber is 20â dB at 1550â nm. The fiber is compatible with the standard SMF-28 fiber and can be easily integrated using standard fusion splicing with losses of 0.1â dB.
RESUMO
Intensity fluctuations in supercontinuum generation are studied in polarization-maintaining (PM) and non-PM all-normal dispersion tellurite photonic crystal fibers. Dispersive Fourier transformation is used to resolve the shot-to-shot spectra generated using 225-fs pump pulses at 1.55 µm, with experimental results well reproduced by vector and scalar numerical simulations. By comparing the relative intensity noise for the PM and non-PM cases, supported by simulations, we demonstrate the advantage of the polarization-maintaining property of the PM fibers in preserving low-noise dynamics. We associate the low-noise in the PM case with the suppression of polarization modulation instability.
RESUMO
We test the development of a silica all-glass optical fiber with a highly birefringent large mode area (HB-LMA). In the fiber, the birefringence and single mode operation are independent of bending and results from the internal nanostructuring of the core, which makes the glass anisotropic. Taking into account technological limitations of the doped silica glasses, we optimized the HB-LMA fiber properties by appropriate selection of germanium and fluorine doping level of silica used in the fiber core and cladding. We demonstrated that the anisotropic glass can be successfully used as a core material in large core area fibres in C-band for polarization components of the fundamental mode. We obtained phase birefringence of 1.92 × 10-4 in the fiber with the core diameter of 30â µm and the effective mode area equal to 573â µm2 and 804â µm2, for x- and y-polarization, respectively. The same approach was applied to designing a single mode fiber with 40â µm core diameter and effective mode area over 1000 µm2, which supports only single polarization.
RESUMO
The linear complex refractive index of a set of borosilicate and tellurite as well as heavy metal oxide silicate, germanate and fluoride glasses has been determined using the Kramers-Kronig analysis on combined data from terahertz time domain (THz-TD) and Fourier transform infrared (FTIR) spectrometers in the ultrabroadband range of 0.15 THz to 200 THz. Debye, Lorentz and shape language modeling (SLM) approaches are applied. Far-infrared absorption power-law model parameters are determined via searching for the largest frequency range that minimizes the root mean squared error (RMSE) of a linear least squares fit for the set of glasses and other glass literature data. Relationships between the absorption parameters, glass properties and compositions are explored.
RESUMO
A nanostructured core silica fiber with active and photosensitive areas implemented within the fiber core is demonstrated. The photosensitivity, active and passive properties of the fiber can be independently shaped with this new approach. We show that discrete local doping with active ions in form of nanorods allow to obtain effective laser action as in case of continuous distribution of the ions in the core. Co-existing discrete photosensitive nanostructure of germanium doped silica determine single-mode performance and allow inscription of highly efficient Bragg grating over the entire core area. Each nanostructure do not degrade performance of other one since physical interaction between active and photosensitive areas are removed. As a proof of concept, we have designed and fabricated the nanostructured, ytterbium single-mode silica fiber laser with the Bragg grating inscribed in the entire core area. We demonstrated fiber laser with good quality of generated laser beam (M2=1.1) with lasing efficiency of 44% and inscribed Bragg grating with 98.5% efficiency and -18â dB contrast.