Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biodegradation ; 35(5): 469-491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748305

RESUMO

Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.


Assuntos
Poluentes Atmosféricos , Filtração , Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos , Metano , Biodegradação Ambiental , Compostos Orgânicos Voláteis , Poluição do Ar/prevenção & controle , Gases
2.
Crit Rev Biotechnol ; 43(7): 1019-1034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001040

RESUMO

Hazardous airborne pollutants are frequently emitted to the atmosphere in the form of a gaseous mixture. Air biofilters as the primary biotechnological choice for waste gas treatment (low inlet concentration and high gas flow rate) should run properly when the feed contains multiple pollutants. Simultaneous removal of pollutants in biofilters has been extensively studied over the last 10 years. In this review, the results and findings of the mentioned studies including different groups of pollutants, such as methane (CH4) and volatile organic compounds (VOCs) are discussed. As the number of pollutants in a mixture increases, their elimination might become more complicated due to interactions between the pollutants. Parallel batch studies might be helpful to better understand these interaction effects in the absence of mass transfer limitations. Setting optimum operating conditions for removal of mixtures in biofilters is challenging because of opposing properties of pollutants. In biofilters, concerns, such as inlet gas composition variation and stability while dealing with abrupt inlet load and concentration changes, must be managed especially at industrial scales. Biofilters designed with multi-layer beds, allow tracking the fate of each pollutant as well as analyzing the diversity of microbial culture across the filter bed. Certain strategies are recommended to improve the performance of biofilters treating mixtures. For example, addition of (bio)surfactants as well as a second liquid phase in biotrickling filters might be considered for the elimination of multiple pollutants especially when hydrophobic pollutants are involved.

3.
Crit Rev Biotechnol ; 42(3): 450-467, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34261394

RESUMO

Sewage from residents and industries is collected and transported to wastewater treatment plants (WWTPs) with sewer networks. The operation of WWTPs results in emissions of greenhouse gases, such as methane (CH4), mostly due to sludge anaerobic digestion. Amounts of emissions depend on the source of influent, i.e. municipal and industrial wastewater as well as sewer systems (gravity and rising). Wastewater is the fifth-largest source of anthropogenic CH4 emissions in the world and represents 7-9% of total global CH4 emissions into the atmosphere. Global wastewater CH4 emission grew by approximately 20% from 2005 to 2020 and is expected to grow by 8% between 2020 and 2030, which makes wastewater an important CH4 emitter worldwide. This review initially considers the emission of CH4 from WWTPs and sewer networks. In the second part, biotechniques available for biodegradation of low CH4 concentrations (<5% v/v) encountered in WWTPs have been studied. The paper reviews major bioreactor configurations for the treatment of polluted air, i.e. biotrickling filters, bioscrubbers, two-liquid phase bioreactors, biofilters, and hybrid reactor configurations, after which it focuses on CH4 biofiltration systems. Biofiltration represents a simple and efficient approach to bio-oxidize CH4 in waste gases from WWTPs. Major factors influencing a biofilter's performance along with knowledge gaps in relation to its application for treating gaseous emissions from WWTPs are discussed.


Assuntos
Metano , Purificação da Água , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
4.
Water Sci Technol ; 85(2): 591-604, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35100141

RESUMO

The application and design of treatment systems in wastewater are necessary due to antibiotics' potential toxicity and resistant genes on residual effluent. This work evaluated a coupled bio-electrochemical system to reduce chloramphenicol (CAP) and chemical oxygen demand (COD) on swine wastewater (SWW). SWW characterization found CAP of <10 µg/L and 17,434 mg/L of COD. The coupled system consisted of preliminary use of an Up-flow Anaerobic Sludge Blanket Reactor (UASB) followed by electrooxidation (EO). The UASB reactor (primary stage) was operated for three months at an organic load of 8.76 kg of COD/m3d and 50 mg CAP/L as initial concentration. In EO, we carried out a 22 (time operation and intensity) factorial design with a central composite design; we tried two Ti cathodes and one anode of Ti/PbO2. Optimal conditions obtained in the EO process were 240 min of operation time and 1.51 A of current intensity. It was possible to eliminate 44% of COD and 64.2% of CAP in the preliminary stage. On bio-electrochemicals, total COD and CAP removal were 82.35 and >99.99%, respectively. This coupled system can be applied to eliminate antibiotics and other organic pollutants in agricultural, industrial, municipal, and other wastewaters.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Cloranfenicol , Suínos , Eliminação de Resíduos Líquidos
5.
J Environ Qual ; 47(2): 297-305, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29634787

RESUMO

A combination of processes was required for the proper treatment of old landfill leachate, as it contained a high concentration of pollutants. Humic substances comprised half of the total organic carbon in the raw leachate. Mobility of di(2-ethylhexyl) phthalate (DEHP) and metals could depend on the fate of these substances. Characterization of carbon in raw leachate and effluent of the membrane bioreactor, biofiltration, electro-oxidation, electro-coagulation, and nanofiltration showed complete removal of suspended solids and colloids. Physical processes could not remove the hydrophilic fraction due to its lower molecular weight. However, high removal of the hydrophilic fraction with a molecular weight <500 Da was expected in the biological process. In comparison with fulvic acid, larger sized humic acid resulted in complete removal by physicochemical processes. Because of DEHP partitioning on dissolved organic matter, especially on humic substances, its removal could be correlated with total organic carbon removal. Metals such as iron, aluminum, magnesium, and lead showed removal efficiency >80% in biological processes. Electro-deposition on the surface of an electrode and precipitation by hydroxide resulted in removal efficiencies >90 and >50% in electro-coagulation and electro-oxidation, respectively. Rejection of metals by nanofiltration was >80% and depended on the size and charge of cation. All in all, a combination of membrane bioreactor and nanofiltration seems to be the optimal process configuration for efficient treatment of old landfill leachate.


Assuntos
Substâncias Húmicas/análise , Eliminação de Resíduos , Poluentes Químicos da Água/análise , Reatores Biológicos , Ferro
6.
Water Sci Technol ; 77(5-6): 1505-1513, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29595153

RESUMO

In this study, a submerged membrane bioreactor was used to study the effect of low and high bisphenol A (BPA) concentration on the sludge biological activity. The pilot was operated over 540 days with hydraulic retention time and solid retention time of 5.5 hours and 140 days, respectively. As a hydrophobic compound, BPA was highly adsorbed by activated sludge. In lower concentrations, the biodegradation rate remained low, since the BPA concentration in the sludge was lower than 0.5 mg/g TS; yet, at an influent concentration up to 15 mg/L, the biodegradation rate was increasing, resulting in 99% BPA removal efficiency. The result for chemical oxygen demand removal showed that BPA concentration has no effect on the heterotrophic bacteria that were responsible for the organic carbon degradation. In higher concentrations, up to 16 mg of BPA was used for each gram of sludge as a source of carbon. However, the activity of autotrophic bacteria, including nitrifiers, was completely halted in the presence of 20 mg/L of BPA or more. Although nitrification was stopped after day 400, ammonia removal remained higher than 70% due to air stripping. Assimilation by bacteria was the only removal pathway for phosphorus, which resulted in an average 35% of P-PO4 removal efficiency.


Assuntos
Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Reatores Biológicos , Membranas Artificiais , Fenóis/química , Fenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Amônia , Análise da Demanda Biológica de Oxigênio , Nitrificação , Fósforo , Esgotos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
7.
J Environ Manage ; 184(Pt 2): 318-326, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27733297

RESUMO

Combination of high performance membrane bioreactor (MBR) equipped with ultrafiltration and electro-oxidation process (EOP) by boron-doped diamond electrode (BDD) was used to effectively treat highly contaminated old landfill leachate. MBR and EOP were optimized for raw and pretreated landfill leachate. Seasonal changes dramatically affected the both processes' performance, as the landfill leachate was ¾ more concentrated in winter. For MBR, organic load rate of 1.2 gCOD/L/day and sludge retention time of 80 days was considered as the optimum operating condition in which COD, TOC, NH4+ and phosphorous removal efficiencies reached the average of 63, 35, 98 and 52%, respectively. The best performance of EOP was in current intensity of 3 A with treatment of time of 120 min. Effluent of electro-oxidation was more toxic due to the presence of radicals and organochlorinated compounds. These compounds were removed by stripping or assimilation of sludge if EOP was used as a pretreatment method. Furthermore, the energy consumption of EOP was decreased from 22 to 16 KWh/m3 for biologically treated and raw landfill leachate, respectively.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Boro , Diamante , Eletrodos , Desenho de Equipamento , Substâncias Húmicas , Oxirredução , Quebeque , Esgotos , Ultrafiltração , Poluentes Químicos da Água/metabolismo
8.
Water Sci Technol ; 73(2): 445-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819401

RESUMO

The effect of different concentrations of tylosin on methane production was investigated: first methanogenesis in a biomass without contact with the antibiotic, and later the ability of the sludge to adapt to increasing concentrations of tylosin. Results showed that, for biomass that had no contact with the antibiotic, the presence of tylosin inhibits the generation of methane even at concentrations as small as 0.01 mg L(-1), and samples at concentrations above 0.5 mg L(-1) produced practically no methane, whereas, in the digesters acclimated in the presence of tylosin at a concentration of 0.01 to 0.065 mg L(-1), methanogenesis is not inhibited in the presence of antibiotic and the generation of methane is improved. This behaviour suggests the microorganisms have developed not only resistance to the antibiotic but also an ability to metabolize it.


Assuntos
Antibacterianos/toxicidade , Resistência Microbiana a Medicamentos , Metano/metabolismo , Tilosina/toxicidade , Águas Residuárias , Adaptação Biológica , Anaerobiose , Animais , Biocombustíveis , Biomassa , Esgotos , Suínos
9.
Bioprocess Biosyst Eng ; 38(6): 1097-102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25575763

RESUMO

Owing to CO2-free emission, hydrogen is considered as a potential green alternative of fossil fuels. Water is the major emission of hydrogen combustion process and gravimetric energy density of hydrogen is nearly three times more than that of gasoline and diesel fuel. Biological hydrogen production, therefore, has commercial significance; especially, when it is produced from low-cost industrial waste-based feedstock. Light independent anaerobic fermentation is simple and mostly studied method of biohydrogen production. During hydrogen production by this method, a range of organic acid byproducts are produced. Accumulation of these byproducts is inhibitory for hydrogen production as it may result in process termination due to sharp decrease in medium pH or by possible metabolic shift. For the first time, therefore, a two-phase anaerobic bioreactor system has been reported for biohydrogen production which involves in situ extraction of different organic acids. Among different solvents, based on biocompatibility oleyl alcohol has been chosen as the organic phase of the two-phase system. An organic:aqueous phase ratio of 1:50 has been found to be optimum for hydrogen production. The strategy was capable of increasing the hydrogen production from 1.48 to 11.65 mmol/L-medium.


Assuntos
Ácidos/isolamento & purificação , Hidrogênio , Compostos Orgânicos/isolamento & purificação , Anaerobiose , Fermentação , Solventes/química
10.
J Environ Sci (China) ; 37: 37-50, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574086

RESUMO

Highly hydrophobic Di 2-ethyl hexyl phthalate (DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand (COD) and ammonia concentration were detected below 10 and 1.0mg/L, respectively for operating conditions of hydraulic retention time (HRT)=4 and 6hr, sludge retention time (SRT)=140day and sludge concentration between 11.5 and 15.8g volatile solid (VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor, which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants.


Assuntos
Reatores Biológicos , Cidades , Dietilexilftalato/isolamento & purificação , Dietilexilftalato/metabolismo , Imersão , Membranas Artificiais , Águas Residuárias/química , Animais , Incrustação Biológica , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Daphnia/efeitos dos fármacos , Dietilexilftalato/química , Dietilexilftalato/toxicidade , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/isolamento & purificação , Fósforo/metabolismo , Solubilidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
11.
Bioprocess Biosyst Eng ; 36(1): 1-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22644063

RESUMO

Global biodiesel production is continuously increasing and it is proportionally accompanied by a huge amount of crude glycerol (CG) as by-product. Due to its crude nature, CG has very less commercial interest; although its pure counterpart has different industrial applications. Alternatively, CG is a very good carbon source and can be used as a feedstock for fermentative hydrogen production. Further, a move of this kind has dual benefits, namely it offers a sustainable method for disposal of biodiesel manufacturing waste as well as produces biofuels and contributes in greenhouse gas (GHG) reduction. Two-stage fermentation, comprising dark and photo-fermentation is one of the most promising options available for bio-hydrogen production. In the present study, techno-economic feasibility of such a two-stage process has been evaluated. The analysis has been made based on the recent advances in fermentative hydrogen production using CG as a feedstock. The study has been carried out with special reference to North American biodiesel market; and more specifically, data available for Canadian province, Québec City have been used. Based on our techno-economic analysis, higher production cost was found to be the major bottleneck in commercial production of fermentative hydrogen. However, certain achievable alternative options for reduction of process cost have been identified. Further, the process was found to be capable in reducing GHG emissions. Bioconversion of 1 kg of crude glycerol (70 % w/v) was found to reduce 7.66 kg CO(2) eq (equivalent) GHG emission, and the process also offers additional environmental benefits.


Assuntos
Biocombustíveis/economia , Biocombustíveis/microbiologia , Glicerol/economia , Glicerol/metabolismo , Hidrogênio/economia , Hidrogênio/metabolismo , Biodegradação Ambiental , Modelos Econômicos , Quebeque
12.
Water Sci Technol ; 68(9): 1926-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225091

RESUMO

Bisphenol-A (BPA) biodegradation was studied in a membrane bioreactor under aerobic conditions. The effects of the initial BPA concentration and initial chemical oxygen demand (COD) concentration on BPA biodegradation were investigated. The degradation process followed a first-order kinetic (more than 98% of BPA was removed) with a kinetic rate constant of 1.134 h(-1) using an initial BPA concentration of 1.0 mg L(-1). The kinetic rate constant decreased to 0.611 h(-1) when the initial BPA concentration increased to 5.0 mg L(-1). The initial COD concentration (400 and 2,000 mg L(-1)) did not affect the biodegradation kinetic of BPA.


Assuntos
Compostos Benzidrílicos/metabolismo , Reatores Biológicos , Fenóis/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Cinética , Esgotos/análise
13.
Water Sci Technol ; 68(4): 894-900, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985521

RESUMO

This study determined a tylosin concentration in swine wastewater located in a Mexican pig farm, during different stages of the pigs' growth. The detection of antibiotics in swine wastewater is complex due to its high concentration of solids. Analytical method was developed for detection of tylosin in swine wastewater and swine slurry. Average recoveries of tylosin in the liquid and solid phase were greater than 51 and 44%, respectively, with a greater total recovery of 95%. The results indicated the presence of tylosin in swine wastewater and slurry at concentrations greater than the ones reported in the literature. In grab samples of swine wastewater, the tylosin detected showed concentrations of 56, 72 and 8.6 µg L(-1), in breeding-gestation, nursery pigs, and grow-finishing area, respectively. In composite samples, the concentration of tylosin was 11.8 µg L(-1) for the breeding-gestation area and 2.4 µg L(-1) for the grow-finishing area. For slurry, the concentration of tylosin was 20.6 and 17.8 µg L(-1), for the breeding-gestation and grow-finishing area, respectively. This study presents the detection of a high concentration of tylosin in breeding-gestation and nursery pigs. Traces of tylosin in wastewater from grow-finishing stage were found although the animals were not receiving antibiotics.


Assuntos
Antibacterianos/química , Suínos , Tilosina/química , Poluentes Químicos da Água/química , Agricultura , Animais , México
14.
Environ Technol ; : 1-10, 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36789628

RESUMO

Global warming needs immediate attention to reduce major greenhouse gas emissions such as methane (CH4). Bio-oxidation of dilute CH4 emissions in packed-bed bioreactors such as biofilters has been carried out over recent years at laboratory and large scales. However, a big challenge is to keep CH4 biofilters running for a long period. In this study, a packed-bed lab-scale bioreactor with a specialized inorganic-based filter bed was successfully operated over four years for CH4 elimination. The inoculation of the bioreactor was the active leachate of another CH4 biofilter which resulted in a fast acclimation and removal efficiency (RE) reached 80% after seven weeks of operation for CH4 inlet concentrations ranging from 700 to 800 ppmv and an empty bed residence time (EBRT) of 6 min. During four years of operation, the bioreactor often recorded REs higher than 65% for inlet concentrations in the range of 1900-2200 ppmv and an EBRT of 6 min. The rate and interval of the nutrient supply played an important role in maintaining the bioreactor's high performance over the long operation. Forced shutdowns were unavoidable during the 4-year operation and the bioreactor fully tolerated them with a partial recovery within one week and a progressive recovery over time. In the end, the bioreactor's filter bed started to deteriorate due to a long shutdown of twelve weeks and the extended operation of four years when the RE dropped to below 8% with no sign of returning to its earlier performance.

15.
Bioresour Technol ; 319: 124223, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254452

RESUMO

This study was performed to understand the dynamics of the microbial community of submerged membrane bioreactor during the acclimatization process to treat the hospital wastewater. In this regard, three acclimatization phases were examined using a mixture of synthetic wastewater (SWW) and real hospital wastewater (HWW) in the following proportions; In Phase 1: 75:25 v/v (SWW: HWW); Phase 2: 50:50 v/v (SWW: HWW); and Phase 3: 25:75 v/v (SWW: HWW) of wastewater. The microbial community was analyzed using Illumina high throughput sequencing to identify the bacterial and micro-eukaryotes community in SMBR. The acclimatization study clearly demonstrated that shift in microbial community composition with time. The dominance of pathogenic and degrading bacterial communities such as Mycobacterium, Pseudomonas, and Zoogloea was observed at the phase 3 of acclimatization. This study witnessed the major shift in the micro-eukaryotes community, and the proliferation of fungi Basidiomycota was observed in phase 3 of acclimatization.


Assuntos
Microbiota , Águas Residuárias , Aclimatação , Reatores Biológicos , Hospitais , Eliminação de Resíduos Líquidos
16.
Environ Technol ; 42(22): 3463-3474, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32072869

RESUMO

Arsenic presence in the water has become one of the most concerning environmental problems. Electrocoagulation is a technology that offers several advantages over conventional treatments such as chemical coagulation. In the present work, an electrocoagulation system was optimized for arsenic removal at initial concentrations of 100 µg/L using response surface methodology. The effects of studied parameters were determined by a 23 factorial design, whereas treatment time had a positive effect and current intensity had a negative effect on arsenic removal efficiency. With a p-value of 0.1629 and a confidence of level 99%, the type of electrode material did not have a significant effect on arsenic removal. Efficiency over 90% was reached at optimal operating conditions of 0.2 A of current intensity, and 7 min of treatment time using iron as the electrode material. However, the time necessary to accomplish with OMS arsenic guideline of 10 µg/L increased from 7 to 30 min when real arsenic-contaminated groundwater with an initial concentration of 80.2 ± 3.24 µg/L was used. The design of a pilot-scale electrocoagulation reactor was determined with the capacity to meet the water requirement of a 6417 population community in Sonora, Mexico. To provide the 1.0 L/s required, an electrocoagulation reactor with a working volume of 1.79 m3, a total electrode effective surface of 701 m2, operating at a current intensity of 180 A and an operating cost of 0.0208 US$/day was proposed. Based on these results, electrocoagulation can be considered an efficient technology to treat arsenic-contaminated water and meet the drinking water quality standards.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Água
17.
Chemosphere ; 252: 126492, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443260

RESUMO

Four upflow 0.018 m3 biofilters (3 beds), B-ME, B-200, B-500 and B-700, all packed with inorganic materials, were operated at a constant air flow rate of 0.18 m3 h-1 to eliminate methane (CH4), a harmful greenhouse gas (GHG), and styrene (C8H8), a carcinogenic volatile organic compound (VOC). The biofilters were irrigated with 0.001 m3 of recycled nutrient solution (NS) every day (flow rate of 60 × 10-3 m3 h-1). Styrene inlet load (IL) was kept constant in each biofilter. Different CH4-ILs varying in the range of 7-60 gCH4 m-3 h-1 were examined in B-ME (IL of 0 gC8H8 m-3 h-1), B-200 (IL of 9 gC8H8 m-3 h-1), B-500 (IL of 22 gC8H8 m-3 h-1) and B-700 (IL of 32 gC8H8 m-3 h-1). Finally, the effect of C8H8 on the macrokinetic parameters of CH4 biofiltration was studied based on the Michaelis-Menten model. Average C8H8 removal efficiencies (RE) varying between 64 and 100% were obtained at CH4-ILs increasing from 7 to 60 gCH4 m-3 h-1 and for C8H8-ILs range of 0-32 gC8H8 m-3 h-1. More than 90% of C8H8 was removed in the bottom and middle beds of the biofilters. By increasing C8H8-IL from 0 to 32 gC8H8 m-3 h-1, maximal EC in Michaelis-Menten model and macrokinetic saturation constant declined from 311 to 39 g m-3 h-1 and from 19 to 2.3 g m-3, respectively, which confirmed that an uncompetitive inhibition occurred during CH4 biofiltration in the presence of C8H8.


Assuntos
Biodegradação Ambiental , Metano/metabolismo , Estireno/metabolismo , Filtração , Gases de Efeito Estufa
18.
Environ Technol ; 41(28): 3682-3694, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31120399

RESUMO

Research on the development of a passive phosphorus entrapment process characterized by biofilters with active wood-based media impregnated with iron hydroxide has been conducted. Phosphorus removal was done by sorption which includes adsorption, exchange of ions and precipitation. Experiments were performed in order to investigate the effect of nitrate, generally present at the end of secondary treatment, on the phosphorus removal performance. Columns tests were performed with anaerobic activated wood-based media and immersion over a period of 150 days. Columns were fed for 32 days with a synthetic solution of 5 mg P L-1. Different concentrations of nitrate (5, 10 and 25 mg N-NO3 L-1) were then applied on three columns (C2, C3 and C4), column C1 serving as a control. Results showed total phosphorus (TP) removal efficiencies of 96.9%, 81.7%, 70.6% and 75.7%, respectively, for C1, C2, C3 and C4. Addition of nitrate increases the oxidoreduction potential (ORP). This results in an inhibition of the reductive dissolution, characterized by a decrease in the release of ferrous ions. Simultaneous denitrification occurs within the columns. It is both biological and chemical through the oxidation of ferrous ions by NO2, produced during biological denitrification. Furthermore, bacterial identification tests have highlighted the presence of iron-related bacteria (Pseudomonas, Thiobacillus, Enteric bacteria, e.g. E. coli), slym forming bacteria, sulphate reducing bacteria and denitrifying microorganisms such as Pseudomonas and E. bacteria in biofilters.


Assuntos
Desnitrificação , Fósforo , Reatores Biológicos , Escherichia coli , Nitratos , Nitrogênio , Eliminação de Resíduos Líquidos
19.
Waste Manag ; 75: 391-399, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29477648

RESUMO

Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ±â€¯2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ±â€¯2.7%, 60 ±â€¯13%, 95 ±â€¯2.6% and 82 ±â€¯5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH4 removal) and a partial removal of dissolved organic compounds (42 ±â€¯7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters).


Assuntos
Eletrocoagulação , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/química , Filtração , Substâncias Húmicas , Compostos Orgânicos , Fósforo
20.
Bioresour Technol ; 249: 673-683, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29091853

RESUMO

Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate.


Assuntos
Resíduos Industriais , Butanóis , Etanol , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA