Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 56(4): 329-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26915983

RESUMO

Our research group has found preliminary evidences of the fungal biodegradation pathway of ellagitannins, revealing first the existence of an enzyme responsible for ellagitannins degradation, which hydrolyzes pomegranate ellagitannins and it was called ellagitannase or elagitannin acyl hydrolase. However, it is necessary to generate new and clear information in order to understand the ellagitannin degradation mechanisms. This work describes the distinctive and unique features of ellagitannin metabolism in fungi. In this study, hydrolysis of pomegranate ellagitannins by Aspergillus niger GH1 was studied by solid-state culture using polyurethane foam as support and pomegranate ellagitannins as substrate. The experiment was performed during 36 h. Results showed that ellagitannin biodegradation started after 6 h of fermentation, reaching the maximal biodegradation value at 18 h. It was observed that ellagitannase activity appeared after 6 h of culture, then, the enzymatic activity was maintained up to 24 h of culture reaching 390.15 U/L, after this period the enzymatic activity decreased. Electrophoretic band for ellagitannase was observed at 18 h. A band obtained using non-denaturing electrophoresis was identified as ellagitannase, then, a tandem analysis to reveal the ellagitannase activity was performed using Petri plate with pomegranate ellagitannins. The extracts were analyzed by HPLC/MS to evaluate ellagitannins degradation. Punicalin, gallagic acid, and ellagic acid were obtained from punicalagin. HPLC/MS analysis identified the gallagic acid as an intermediate molecule and immediate precursor of ellagic acid. The potential application of catabolic metabolism of ellagitannin hydrolysis for ellagic acid production is outlined.


Assuntos
Aspergillus niger/metabolismo , Reatores Biológicos , Taninos Hidrolisáveis/metabolismo , Aspergillus niger/enzimologia , Biodegradação Ambiental , Ácido Elágico/química , Ácido Elágico/metabolismo , Ativação Enzimática , Fermentação , Taninos Hidrolisáveis/química , Lythraceae/química , Lythraceae/metabolismo , Redes e Vias Metabólicas , Extratos Vegetais/química
2.
Rev Argent Microbiol ; 48(1): 71-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26916811

RESUMO

Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid.


Assuntos
Aspergillus niger/efeitos dos fármacos , Aspergillus niger/metabolismo , Ácido Elágico/metabolismo , Taninos Hidrolisáveis/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Larrea , Lythraceae , Vaccinium macrocarpon
3.
J Basic Microbiol ; 54(1): 28-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23564673

RESUMO

Ellagitannins (ETs) are phytochemicals derived from secondary metabolism associated to defense system, with complex chemical structures, which have high participation during all stages of protection against microbial infection. In this study, we report the fungal biodegradation of a bioactive ET, named punicaline which was recovered and purified from pomegranate peels and used as carbon source in solid-state culture (SSC) using polyurethane as solid support. SSC was kinetically monitored during 36 h of incubation time. ETs and glycosides consumption were spectrophotometrically determined. Ellagic acid (EA) accumulation was analyzed by HPLC. Several enzymatic activities were assayed (cellulase, xylanase, ß-glucosydase, polyphenoloxidase, tannase, and ET hydrolyzing activities). The consumption levels of ETs and glycosides were 66 and 40%, while EA accumulation reached 42.02 mg g(-1). A differential pattern of enzymatic activities was found; evidence from our studies suggests that the ET hydrolyzing activity is directly associated to EA accumulation, and production of this enzyme may represent the most critical step to successfully develop a bioprocess for production of an important bioactive compound, the EA.


Assuntos
Aspergillus niger/enzimologia , Taninos Hidrolisáveis/metabolismo , Lythraceae/química , Biodegradação Ambiental , Ácido Elágico/metabolismo , Taninos Hidrolisáveis/isolamento & purificação , Poliuretanos
4.
Physiol Biochem Zool ; 96(3): 192-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278586

RESUMO

Drosophila experimental evolution, with its well-defined selection protocols, has long supplied useful genetic material for the analysis of functional physiology. While there is a long tradition of interpreting the effects of large-effect mutants physiologically, identifying and interpreting gene-to-phenotype relationships has been challenging in the genomic era, with many labs not resolving how physiological traits are affected by multiple genes throughout the genome. Drosophila experimental evolution has demonstrated that multiple phenotypes change because of the evolution of many loci across the genome, creating the scientific challenge of sifting out differentiated but noncausal loci for individual characters. The fused lasso additive model method allows us to infer some of the differentiated loci that have relatively greater causal effects on the differentiation of specific phenotypes. The experimental material that we use in the present study comes from 50 populations that have been selected for different life histories and levels of stress resistance. Differentiation of cardiac robustness, starvation resistance, desiccation resistance, lipid content, glycogen content, water content, and body masses was assayed among 40-50 of these experimentally evolved populations. Through the fused lasso additive model, we combined physiological analyses from eight parameters with whole-body pooled-seq genomic data to identify potentially causally linked genomic regions. We have identified approximately 2,176 significantly differentiated 50-kb genomic windows among our 50 populations, with 142 of those identified genomic regions that are highly likely to have a causal effect connecting specific genome sites to specific physiological characters.


Assuntos
Drosophila , Inanição , Animais , Drosophila/genética , Drosophila melanogaster/genética , Fenótipo , Aprendizado de Máquina
5.
Rev. argent. microbiol ; 48(1): 71-77, mar. 2016. graf, tab
Artigo em Inglês | LILACS | ID: biblio-843148

RESUMO

Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8 h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid.


La hidrólisis fúngica de los elagitaninos produce ácido hexahidroxidifénico, considerado como una molécula intermedia en la liberación de ácido elágico. El ácido elágico tiene importantes y deseables propiedades benéficas para la salud humana. El objetivo de este trabajo fue identificar el efecto de la fuente de elagitaninos sobre la eficiente liberación de ácido elágico por Aspergillus niger. La liberación de ácido elágico se realizó con tres cepas de A. niger (GH1, PSH y HT4) en presencia de diferentes fuentes de polifenoles (arándano, gobernadora y granada), usadas como sustrato. Se empleó espuma de poliuretano como soporte para el cultivo en estado sólido en reactores en columna. Se midió la actividad elagitanasa a cada uno de los tratamientos. El ácido elágico liberado se cuantificó por cromatografía líquida de alta resolución. Cuando se utilizaron los polifenoles de granada, se alcanzó un valor máximo de 350,21 mg/g de ácido elágico con A. niger HT4 en cultivo en estado sólido. La mayor actividad elagitanasa (5176.81 U/l) se obtuvo a 8 h de cultivo cuando se usaron los polifenoles de arándano como sustrato y A. niger PSH. Los resultados demostraron el efecto que tiene la fuente de polifenoles y la cepa de A. niger en la liberación de ácido elágico. Se observó que la mejor fuente para la liberación de ácido elágico fueron los polifenoles de granada y que la cepa A. niger HT4 posee la habilidad de degradar estos compuestos para la obtención de potentes moléculas bioactivas, como el ácido elágico.


Assuntos
Aspergillus niger/isolamento & purificação , Ácido Elágico/análise , Polifenóis/análise , Aspergillus niger/fisiologia , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA