Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Eur Biophys J ; 48(7): 621-633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31324942

RESUMO

Antimicrobial peptides are a large group of natural compounds which present promising properties for the pharmaceutical and food industries, such as broad-spectrum activity, potential for use as natural preservatives, and reduced propensity for development of bacterial resistance. Plantaricin 149 (Pln149), isolated from Lactobacillus plantarum NRIC 149, is an intrinsically disordered peptide with the ability to inhibit bacteria from the Listeria and Staphylococcus genera, and which is capable of promoting inhibition and disruption of yeast cells. In this study, the interactions of Pln149 with model membranes composed of zwitterionic and/or anionic phospholipids were investigated using a range of biophysical techniques, including isothermal titration calorimetry, surface tension measurements, synchrotron radiation circular dichroism spectroscopy, oriented circular dichroism spectroscopy, and optical microscopy, to elucidate these peptides' mode of interactions and provide insight into their functional roles. In anionic model membranes, the binding of Pln149 to lipid bilayers is an endothermic process and induces a helical secondary structure in the peptide. The helices bind parallel to the surfaces of lipid bilayers and can promote vesicle disruption, depending on peptide concentration. Although Pln149 has relatively low affinity for zwitterionic liposomes, it is able to adsorb at their lipid interfaces, disturbing the lipid packing, assuming a similar parallel helix structure with a surface-bound orientation, and promoting an increase in the membrane surface area. Such findings can explain the intriguing inhibitory action of Pln149 in yeast cells whose cell membranes have a significant zwitterionic lipid composition.


Assuntos
Bacteriocinas/química , Bacteriocinas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Adsorção , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ligação Proteica , Tensão Superficial , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
2.
Biophys J ; 102(5): 1039-48, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22404926

RESUMO

The novel antimicrobial peptide with a dimeric dendrimer scaffold, SB056, was empirically optimized by high-throughput screening. This procedure produced an intriguing primary sequence whose structure-function analysis is described here. The alternating pattern of hydrophilic and hydrophobic amino acids suggests the possibility that SB056 is a membrane-active peptide that forms amphiphilic ß-strands in a lipid environment. Circular dichroism confirmed that the cationic SB056 folds as ß-sheets in the presence of anionic vesicles. Lipid monolayer surface pressure experiments revealed unusual kinetics of monolayer penetration, which suggest lipid-induced aggregation as a membranolytic mechanism. NMR analyses of the linear monomer and the dendrimeric SB056 in water and in 30% trifluoroethanol, on the other hand, yielded essentially unstructured conformations, supporting the excellent solubility and storage properties of this compound. However, simulated annealing showed that many residues lie in the ß-region of the Ramachandran plot, and molecular-dynamics simulations confirmed the propensity of this peptide to fold as a ß-type conformation. The excellent solubility in water and the lipid-induced oligomerization characteristics of this peptide thus shed light on its mechanism of antimicrobial action, which may also be relevant for systems that can form toxic ß-amyloid fibrils when in contact with cellular membranes. Functionally, SB056 showed high activity against Gram-negative bacteria and some limited activity against Gram-positive bacteria. Its potency against Gram-negative strains was comparable (on a molar basis) to that of colistin and polymyxin B, with an even broader spectrum of activity than numerous other reference compounds.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/efeitos dos fármacos , Dendrímeros/metabolismo , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
3.
Eur Biophys J ; 36(4-5): 405-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17089152

RESUMO

It is generally assumed that fusogenic peptides would require a certain conformation, which triggers or participates in the rate-determining step of membrane fusion. Previous structure analyses of the viral fusion peptide from gp41 of HIV-1 have yielded contradictory results, showing either an alpha-helical or a beta-stranded conformation under different conditions. To find out whether either of these conformations is relevant in the actual fusion process, we have placed sterically demanding substitutions into the fusion peptide FP23 to prevent or partially inhibit folding and self-assembly. A single substitution of either D- or L-CF(3)-phenylglycine was introduced in different positions of the sequence, and the capability of these peptide analogues to fuse large unilamellar vesicles was monitored by lipid mixing and dynamic light scattering. If fusion proceeds via a beta-stranded oligomer, then the D- and L-epimers are expected to differ systematically in their activity, since the D-epimers should be unable to form beta-structures due to sterical hindrance. If an alpha-helical conformation is relevant for fusion, then the D-epimers would be slightly disfavoured compared to the L-forms, hence a small systematic difference in fusion activity should be observed. Interestingly, we find that (1) all D- and L-epimers are fusogenically active, though to different extents compared to the wild type, and--most importantly--(ii) there is no systematic preference for either the D- or L-forms. We therefore suggest that a well-structured alpha-helical peptide conformation or a beta-stranded oligomeric assembly can be excluded as the rate-determining state. Instead, fusion appears to involve conformationally disordered peptides with a pronounced structural plasticity.


Assuntos
Fusão de Membrana , Lipídeos de Membrana/química , Modelos Químicos , Lipossomas Unilamelares/química , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura , Internalização do Vírus , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
4.
J Org Chem ; 71(1): 55-61, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16388617

RESUMO

[structures: see text] A simple and highly efficient Fmoc solid-phase protocol for synthesizing the antimicrobial decapeptide gramicidin S and various labeled analogues is presented. When preparing the linear precursor peptides (1a-e), a systematic permutation of the starting amino acid within the cyclic sequence gave different yields between 51% and 93%. Also the subsequent step of cyclization gave widely diverging yields between 26% and 74%, depending again on the starting amino acid. The ease of cyclization was found to correlate with the tendency of the respective linear precursor peptide to assume a preorganized conformation, as observed by circular dichroism. The overall yield is thus critically dependent on the starting amino acid and can be raised from 20% to 70% using (D)Phe. The choice of coupling agent and its counterion was found to play only a marginal role. Irrespective of being able to assume a preorganized conformation, none of the linear precursor peptides exhibited any antimicrobial or hemolytic activity. Using the optimized protocol, which involves only simple Fmoc-couplings and requires no intermittent purification steps, several gramicidin S analogues (3-8) containing 19F-labeled phenylglycine derivatives and/or 15N-labeled amino acids were synthesized for solid-state NMR structure analysis.


Assuntos
Aminoácidos/química , Gramicidina/síntese química , Dicroísmo Circular , Ciclização , Gramicidina/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA