Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38262722

RESUMO

Brain energy stress leads to neuronal hyperexcitability followed by a rapid loss of function and cell death. In contrast, the frog brainstem switches into a state of extreme metabolic resilience that allows them to maintain motor function during hypoxia as they emerge from hibernation. NMDA receptors (NMDARs) are Ca2+-permeable glutamate receptors that contribute to the loss of homeostasis during hypoxia. Therefore, we hypothesized that hibernation leads to plasticity that reduces the role of NMDARs within neural networks to improve function during hypoxia. To test this, we assessed a circuit with a large involvement of NMDAR synapses, the brainstem respiratory network of female bullfrogs, Lithobates catesbeianus Contrary to our expectations, hibernation did not alter the role of NMDARs in generating network output, nor did it affect the amplitude, kinetics, and hypoxia sensitivity of NMDAR currents. Instead, hibernation strongly reduced NMDAR Ca2+ permeability and enhanced desensitization during repetitive stimulation. Under severe hypoxia, the normal NMDAR profile caused network hyperexcitability within minutes, which was mitigated by blocking NMDARs. After hibernation, the modified complement of NMDARs protected against hyperexcitability, as disordered output did not occur for at least one hour in hypoxia. These findings uncover state-dependence in the plasticity of NMDARs, whereby multiple changes to receptor function improve neural performance during metabolic stress without interfering with their normal role during healthy conditions.


Assuntos
Receptores de N-Metil-D-Aspartato , Sinapses , Humanos , Feminino , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Hipóxia , Plasticidade Neuronal/fisiologia
2.
J Physiol ; 599(24): 5485-5504, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34761806

RESUMO

Lactate ion sensing has emerged as a process that regulates ventilation during metabolic challenges. Most work has focused on peripheral sensing of lactate for the control of breathing. However, lactate also rises in the central nervous system (CNS) during disturbances to blood gas homeostasis and exercise. Using an amphibian model, we recently showed that lactate ions, independently of pH and pyruvate metabolism, act directly in the brainstem to increase respiratory-related motor outflow. This response had a long washout time and corresponded with potentiated excitatory synaptic strength of respiratory motoneurons. Thus, we tested the hypothesis that lactate ions enhance respiratory output using cellular mechanisms associated with long-term synaptic plasticity within motoneurons. In this study, we confirm that 2 mM sodium lactate, but not sodium pyruvate, increases respiratory motor output in brainstem-spinal cord preparations, persisting for 2 h upon the removal of lactate. Lactate also led to prolonged increases in the amplitude of AMPA-glutamate receptor (AMPAR) currents in individual motoneurons from brainstem slices. Both motor facilitation and AMPAR potentiation by lactate required classic effectors of synaptic plasticity, L-type Ca2+ channels and NMDA receptors, as part of the transduction process but did not correspond with increased expression of immediate-early genes often associated with activity-dependent neuronal plasticity. Altogether these results show that lactate ions enhance respiratory motor output by inducing conserved mechanisms of synaptic plasticity and suggest a new mechanism that may contribute to coupling ventilation to metabolic demands in vertebrates. KEY POINTS: Lactate ions, independently of pH and metabolism, induce long-term increases in respiratory-related motor outflow in American bullfrogs. Lactate triggers a persistent increase in strength of AMPA-glutamatergic synapses onto respiratory motor neurons. Long-term plasticity of motor output and synaptic strength by lactate involves L-type Ca2+ channels and NMDA-receptors as part of the transduction process. Enhanced AMPA receptor function in response to lactate in the intact network is causal for motor plasticity. In sum, well-conserved synaptic plasticity mechanisms couple the brainstem lactate ion concentration to respiratory motor drive in vertebrates.


Assuntos
Ácido Láctico , Plasticidade Neuronal , Animais , Íons , Receptores de AMPA , Sinapses
3.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R105-R116, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175586

RESUMO

Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.


Assuntos
Tronco Encefálico/fisiologia , Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Rana catesbeiana/fisiologia , Trifosfato de Adenosina/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Desoxiglucose/farmacologia , Feminino , Humanos , Ácido Iodoacético/farmacologia , Norepinefrina/farmacologia , Prazosina/farmacologia
4.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36711958

RESUMO

Brain energy stress leads to neuronal hyperexcitability followed by a rapid loss of function and cell death. In contrast, the frog brainstem switches into a state of extreme metabolic resilience that allows them to maintain motor function during hypoxia as they emerge from hibernation. NMDA receptors (NMDARs) are Ca2+-permeable glutamate receptors that contribute to the loss of homeostasis during hypoxia. Therefore, we hypothesized that hibernation leads to plasticity that reduces the role of NMDARs within neural networks to improve function during energy stress. To test this, we assessed a circuit with a large involvement of NMDAR synapses, the brainstem respiratory network of female bullfrogs, Lithobates catesbeianus. Contrary to our expectations, hibernation did not alter the role of NMDARs in generating network output, nor did it affect the amplitude, kinetics, and hypoxia sensitivity of NMDAR currents. Instead, hibernation strongly reduced NMDAR Ca2+ permeability and enhanced desensitization during repetitive stimulation. Under severe hypoxia, the normal NMDAR profile caused network hyperexcitability within minutes, which was mitigated by blocking NMDARs. After hibernation, the modified complement of NMDARs protected against hyperexcitability, as disordered output did not occur for at least one hour in hypoxia. These findings uncover state-dependence in the plasticity of NMDARs, whereby multiple changes to receptor function improve neural performance during energy stress without interfering with its normal role during healthy activity.

5.
Curr Biol ; 31(24): R1564-R1565, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932961

RESUMO

Disruptions in the delivery of oxygen and glucose impair the function of neural circuits, with lethal consequences commonly observed in stroke and cardiac arrest. Intense focus has been placed on understanding how to overcome neuronal failure during energy stress. Important insights into neuroprotective strategies have come from studies of evolutionary adaptations for survival in hypoxic environments, such as those seen in turtles, naked mole-rats, and several other animals1. Amphibians are not usually numbered among 'champion' hypoxia-tolerant vertebrates, yet here we demonstrate a massive increase in the capacity of a neural circuit to produce activity following oxygen and glucose deprivation in adult bullfrogs. Rhythmic output from a brainstem circuit failed following minutes of severe hypoxia and simulated ischemia; however, after hibernation this network produced patterned activity for ∼3.5 hours during severe hypoxia and ∼2 hours in ischemia. This remarkable improvement was supported by a switch to brain glycogen to fuel anaerobic glycolysis, a pathway thought to support neuronal homeostasis for only a few minutes during ischemia2. These results reveal that circuit activity can exhibit dramatic metabolic plasticity that minimizes the need for ATP synthesis, and these findings represent the greatest range in hypoxia tolerance within a vertebrate neural network. Uncovering the rules that allow the brain to flexibly run only on endogenous fuel reserves will reveal new insights into brain energetics, circuit evolution, and neuroprotection.


Assuntos
Hibernação , Oxigênio , Animais , Glucose , Hibernação/fisiologia , Hipóxia , Ratos-Toupeira/fisiologia , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA