RESUMO
BACKGROUND: This study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of 8-chloro-adenosine (8-Cl-Ado) in patients with relapsed/refractory acute myeloid leukemia (AML). METHODS: 8-Cl-Ado was administered daily for 5 days; the starting dose was 100 mg/m2 , the highest dose tested was 800 mg/m2 . The end points were toxicity, disease response, and PK/PD measurements. RESULTS: The predominant nonhematologic toxicity was cardiac with grade ≥3 toxicity. Plasma PK in all patients suggested heterogeneity among patients, yet, some dose-dependency for the accumulation of 8-Cl-Ado. Two 8-Cl-Ado metabolites accumulated at similar levels to 8-Cl-Ado. Cellular PK in eight patients indicated accumulation of 8-Cl-ATP, which was associated with AML blast cytoreduction in peripheral blood. The authors determined the RP2D of 8-Cl-Ado to be 400 mg/m2 . CONCLUSIONS: Given the cardiac adverse events observed, patients require monitoring for arrhythmias and QT interval during infusion. Although peripheral blood cytoreduction was observed, responses were transient, suggesting combination strategies will be required.
Assuntos
2-Cloroadenosina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , 2-Cloroadenosina/análogos & derivados , 2-Cloroadenosina/farmacocinética , 2-Cloroadenosina/uso terapêuticoRESUMO
PURPOSE OF REVIEW: In this review, we summarize the biological roles of methionine, methionine adenosyl transferase 2A (MAT2A) and S -adenosyl methionine (SAM) in methylation reactions during tumorigenesis. Newly emerged inhibitors targeting the methionine-MAT2A-SAM axis will be discussed. RECENT FINDINGS: SAM is the critical and global methyl-donor for methylation reactions regulating gene expression, and in mammalian cells, it is synthesized by MAT2A using methionine. Recent studies have validated methionine and MAT2A as metabolic dependencies of cancer cells because of their essential roles in SAM biosynthesis. MAT2A inhibition leads to synthetic lethality in methylthioadenosine-phosphorylase (MTAP)-deleted cancers, which accounts for 15% of all cancer types. Of note, remarkable progress has been made in developing inhibitors targeting the methionine-MAT2A-SAM axis, as the first-in-class MAT2A inhibitors AG-270 and IDE397 enter clinical trials to treat cancer. SUMMARY: The methionine-MAT2A-SAM axis plays an important role in tumorigenesis by providing SAM as a critical substrate for abnormal protein as well as DNA and RNA methylation in cancer cells. Targeting SAM biosynthesis through MAT2A inhibition has emerged as a novel and promising strategy for cancer therapy.
Assuntos
Neoplasias , Animais , Carcinogênese , Humanos , Mamíferos/metabolismo , Metionina/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , S-Adenosilmetionina/metabolismoRESUMO
Venetoclax (VEN) in combination with hypomethylating agents induces disease remission in patients with de novo AML, however, most patients eventually relapse. AML relapse is attributed to the persistence of drug-resistant leukemia stem cells (LSCs). LSCs need to maintain low intracellular levels of reactive oxygen species (ROS). Arsenic trioxide (ATO) induces apoptosis via upregulation of ROS-induced stress to DNA-repair mechanisms. Elevated ROS levels can trigger the Nrf2 antioxidant pathway to counteract the effects of high ROS levels. We hypothesized that ATO and VEN synergize in targeting LSCs through ROS induction by ATO and the known inhibitory effect of VEN on the Nrf2 antioxidant pathway. Using cell fractionation, immunoprecipitation, RNA-knockdown, and fluorescence assays we found that ATO activated nuclear translocation of Nrf2 and increased transcription of antioxidant enzymes, thereby attenuating the induction of ROS by ATO. VEN disrupted ATO-induced Nrf2 translocation and augmented ATO-induced ROS, thus enhancing apoptosis in LSCs. Using metabolic assays and electron microscopy, we found that the ATO+VEN combination decreased mitochondrial membrane potential, mitochondria size, fatty acid oxidation and oxidative phosphorylation, all of which enhanced apoptosis of LSCs derived from both VEN-sensitive and VEN-resistant AML primary cells. Our results indicate that ATO and VEN cooperate in inducing apoptosis of LSCs through potentiation of ROS induction, suggesting ATO+VEN is a promising regimen for treatment of VEN-sensitive and -resistant AML.
Assuntos
Antineoplásicos , Arsenicais , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Apoptose , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Arsenicais/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Recidiva , SulfonamidasRESUMO
As a growing number of patients with multiple myeloma (MM) respond to upfront therapies while eventually relapsing in a time frame that is often unpredictable, attention has increasingly focused on developing novel diagnostic criteria to also account for disease dissemination. Positron emission tomography/computed tomography (PET/CT) is often used as a noninvasive monitoring strategy to assess cancer cell dissemination, but because the uptake of the currently used radiotracer 18fluorodeoxyglucose (18F-FDG) is a function of the metabolic activity of both malignant and nonmalignant cells, the results frequently lack sufficient specificity. Radiolabeled antibodies targeting MM tissue may detect disease irrespective of cell metabolism. Hence, we conjugated the clinically significant CD38-directed human antibody daratumumab (Darzalex [Dara]) to the DOTA chelator and labeled it with the positron-emitting radionuclide copper 64 (64Cu; 64Cu-DOTA-Dara). Here, we show that 64Cu-DOTA-Dara can efficiently bind CD38 on the surface of MM cells and was mainly detected in the bones associated with tumor in a MM murine model. We also show that PET/CT based on 64Cu-DOTA-Dara displays a higher resolution and specificity to detect MM cell dissemination than does 18F-FDG PET/CT and was even more sensitive than were bioluminescence signals. We therefore have supporting evidence for using 64Cu-DOTA-Dara as a novel imaging agent for MM.
Assuntos
Anticorpos Monoclonais , Radioisótopos de Cobre , Mieloma Múltiplo/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Radioisótopos de Cobre/farmacocinética , Meia-Vida , Xenoenxertos , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Transplante de Neoplasias , Traçadores RadioativosRESUMO
Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
RESUMO
Targeting oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) in acute myeloid leukemia (AML) can reduce blast survival and tumor immune evasion. Decoy oligodeoxynucleotides (dODNs), which comprise STAT3-specific DNA sequences are competitive inhibition of STAT3 transcriptional activity. To deliver STAT3dODN specifically to myeloid cells, we linked STAT3dODN to the Toll-like receptor 9 (TLR9) ligand, cytosine guanine dinucleotide (CpG). The CpG-STAT3dODN conjugates are quickly internalized by human and mouse TLR9(+)immune cells (dendritic cells, B cells) and the majority of patients' derived AML blasts, including leukemia stem/progenitor cells. Following uptake, CpG-STAT3dODNs are released from endosomes, and bind and sequester cytoplasmic STAT3, thereby inhibiting downstream gene expression in target cells. STAT3 inhibition in patients' AML cells limits their immunosuppressive potential by reduced arginase expression, thereby partly restoring T-cell proliferation. Partly chemically modified CpG-STAT3dODNs have >60 hours serum half-life which allows for IV administration to leukemia-bearing mice (50% effective dose â¼ 2.5 mg/kg). Repeated administration of CpG-STAT3dODN resulted in regression of human MV4-11 AML in mice. The antitumor efficacy of this strategy is further enhanced in immunocompetent mice by combining direct leukemia-specific cytotoxicity with immunogenic effects of STAT3 blocking/TLR9 triggering. CpG-STAT3dODN effectively reducedCbfb/MYH11/MplAML burden in various organs and eliminated leukemia stem/progenitor cells, mainly through CD8/CD4 T-cell-mediated immune responses. In contrast, small-molecule Janus kinase 2/STAT3 inhibitor failed to reproduce therapeutic effects of cell-selective CpG-STAT3dODN strategy. These results demonstrate therapeutic potential of CpG-STAT3dODN inhibitors with broad implications for treatment of AML and potentially other hematologic malignancies.
Assuntos
Ilhas de CpG , Genes cdc/efeitos dos fármacos , Leucemia Mieloide Aguda , Oligodesoxirribonucleotídeos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Evasão Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Estabilidade de Medicamentos , Genes cdc/imunologia , Terapia Genética/métodos , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/uso terapêutico , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Soro/fisiologia , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: The EGFR signaling pathway is frequently activated in human ovarian cancer and associated with poor prognosis. However, inhibition of EGFR signaling in patients with recurrent ovarian cancer has been disappointing. It remains to be addressed whether ovarian cancer patients could benefit from targeting EGFR signaling. Here we investigated the mechanisms underlying the resistance to EGFR inhibition in ovarian cancer and developed a strategy to overcome it. RESULTS: We found that treatment of human ovarian cancer cells with an EGFR inhibitor, gefitinib, resulted in increased STAT3 phosphorylation in a dose- and time-dependent manner. Inhibiting STAT3 activation with a small molecule inhibitor of JAK, an upstream kinase that phosphorylates and activates STAT3, synergistically increased the anti-tumor activity of gefitinib in vitro. Similar results were obtained when STAT3 or JAK1 expression was knocked down. In contrast, inhibiting other signaling pathways, such as AKT/mTOR, MEK or SRC, was relatively less effective. The combined treatment resulted in simultaneous attenuation of multiple survival pathways and increased inhibition of ERK pathway. In addition, the dual inhibition showed a stronger suppression of xenograft tumor growth than either single inhibition. CONCLUSIONS: Our findings demonstrate that feedback activation of STAT3 pathway might contribute to the resistance to EGFR inhibition. Combined blockade of both pathways appears to be more effective against human ovarian cancer than inhibition of each pathway alone both in vitro and in vivo. This study may provide a strategy to improve clinical benefit of targeting EGFR pathway in ovarian cancer patients.
Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Janus Quinases/antagonistas & inibidores , Neoplasias Ovarianas/enzimologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Técnicas de Silenciamento de Genes , Humanos , Janus Quinases/metabolismo , Camundongos , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metionina Adenosiltransferase , Metionina , S-Adenosilmetionina , Sulfonamidas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia , Metionina/metabolismo , Metionina/análogos & derivados , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Animais , Camundongos , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular TumoralRESUMO
It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.
RESUMO
BACKGROUND: BCL-2 inhibition through venetoclax (VEN) targets acute myeloid leukemia (AML) blast cells and leukemic stem cells (LSCs). Although VEN-containing regimens yield 60-70% clinical response rates, the vast majority of patients inevitably suffer disease relapse, likely because of the persistence of drug-resistant LSCs. We previously reported preclinical activity of the ribonucleoside analog 8-chloro-adenosine (8-Cl-Ado) against AML blast cells and LSCs. Moreover, our ongoing phase I clinical trial of 8-Cl-Ado in patients with refractory/relapsed AML demonstrates encouraging clinical benefit. Of note, LSCs uniquely depend on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. VEN inhibits OXPHOS in LSCs, which eventually may escape the antileukemic activity of this drug. FAO is activated in LSCs isolated from patients with relapsed AML. METHODS: Using AML cell lines and LSC-enriched blast cells from pre-treatment AML patients, we evaluated the effects of 8-Cl-Ado, VEN and the 8-Cl-Ado/VEN combination on fatty acid metabolism, glycolysis and OXPHOS using liquid scintillation counting, a Seahorse XF Analyzer and gene set enrichment analysis (GSEA). Western blotting was used to validate results from GSEA. HPLC was used to measure intracellular accumulation of 8-Cl-ATP, the cytotoxic metabolite of 8-Cl-Ado. To quantify drug synergy, we created combination index plots using CompuSyn software. The log-rank Kaplan-Meier survival test was used to compare the survival distributions of the different treatment groups in a xenograft mouse model of AML. RESULTS: We here report that VEN and 8-Cl-Ado synergistically inhibited in vitro growth of AML cells. Furthermore, immunodeficient mice engrafted with MV4-11-Luc AML cells and treated with the combination of VEN plus 8-Cl-Ado had a significantly longer survival than mice treated with either drugs alone (p ≤ 0.006). We show here that 8-Cl-Ado in the LSC-enriched population suppressed FAO by downregulating gene expression of proteins involved in this pathway and significantly inhibited the oxygen consumption rate (OCR), an indicator of OXPHOS. By combining 8-Cl-Ado with VEN, we observed complete inhibition of OCR, suggesting this drug combination cooperates in targeting OXPHOS and the metabolic homeostasis of AML cells. CONCLUSION: Taken together, the results suggest that 8-Cl-Ado enhances the antileukemic activity of VEN and that this combination represents a promising therapeutic regimen for treatment of AML.
Assuntos
2-Cloroadenosina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/uso terapêutico , 2-Cloroadenosina/farmacologia , 2-Cloroadenosina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fosforilação Oxidativa , Sulfonamidas/farmacologiaRESUMO
Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer. Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling. Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05). Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.
Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Feminino , Imunocompetência , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/efeitos dos fármacos , GencitabinaRESUMO
Multiple myeloma (MM) is a blood neoplasia characterized by abnormal proliferation of plasma cells. Various treatments such as stem cell transplant (SCT), proteasome inhibitors, immune-modulating drugs, monoclonal antibodies and selective inhibitors of nuclear export have been routinely used to treat MM. However, relapse and treatment resistance are common problems in MM patients. Treatments are enhanced by Dexamethasone (Dex), a synthetic steroid that activates the glucocorticoid receptor (GR) which leads to apoptosis. To evaluate the potential impact of GR expression on overall survival, MM patient data from the CoMMpass study of 650 patients were analyzed. Multivariate modeling results show that increased GR expression at diagnosis is associated with a decreased risk of dying relative to those with lower levels of expression.
Assuntos
Mieloma Múltiplo , Receptores de Glucocorticoides , Dexametasona , Glucocorticoides , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Recidiva Local de Neoplasia , Receptores de Glucocorticoides/genéticaRESUMO
The inexpensive, well-tolerated, immunomodulatory agent leflunomide, used extensively for the treatment of rheumatoid arthritis, has been shown to produce significant activity against multiple myeloma (MM) in pre-clinical studies. We conducted a phase 1 study (clinicaltrials.gov: NCT02509052) of single agent leflunomide in patients with relapsed/refractory MM (≥3 prior therapies). At dose levels 1 and 2 (20 and 40 mg), no dose-limiting toxicities (DLTs) were observed. At dose level 3 (60 mg), one patient experienced elevated alanine aminotransferase; an additional three patients were enrolled at this dose level without further DLTs. Overall, toxicities were infrequent and manageable. Nine out of 11 patients achieved stable disease (SD), two subjects experiencing SD for nearly one year or longer. The tolerable safety profile of leflunomide, combined with a potential disease stabilization, is motivating future studies of leflunomide, in combination with other MM drugs, or as an approach to delay progression of smoldering MM.
Assuntos
Mieloma Múltiplo , Protocolos de Quimioterapia Combinada Antineoplásica , Reposicionamento de Medicamentos , Humanos , Leflunomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológicoRESUMO
Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.
Assuntos
Movimento Celular/efeitos dos fármacos , Melanoma/patologia , Invasividade Neoplásica/patologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Dasatinibe , Regulação para Baixo/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismoRESUMO
Src family kinase activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective Src family kinase inhibitor, on human cancer cells derived from breast cancer patients to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of approximately 250 nmol/L, which was also the IC50 for inhibition of cellular Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), and Crk-associated substrate (p130Cas), with an IC50 similar to inhibition of cellular Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer.
Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Movimento Celular/efeitos dos fármacos , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteína Substrato Associada a Crk/antagonistas & inibidores , Proteína Substrato Associada a Crk/metabolismo , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Transdução de Sinais , beta Catenina/metabolismo , Quinases da Família src/metabolismoRESUMO
Medulloblastomas are the most frequent malignant brain tumors in children. Sorafenib (Nexavar, BAY43-9006), a multikinase inhibitor, blocks cell proliferation and induces apoptosis in a variety of tumor cells. Sorafenib inhibited proliferation and induced apoptosis in two established cell lines (Daoy and D283) and a primary culture (VC312) of human medulloblastomas. In addition, sorafenib inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) in both cell lines and primary tumor cells. The inhibition of phosphorylated STAT3 (Tyr(705)) occurs in a dose- and time-dependent manner. In contrast, AKT (protein kinase B) was only decreased in D283 and VC312 medulloblastoma cells and mitogen-activated protein kinases (extracellular signal-regulated kinase 1/2) were not inhibited by sorafenib in these cells. Both D-type cyclins (D1, D2, and D3) and E-type cyclin were down-regulated by sorafenib. Also, expression of the antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was decreased and correlated with apoptosis induced by sorafenib. Finally, sorafenib suppressed the growth of human medulloblastoma cells in a mouse xenograft model. Together, our data show that sorafenib blocks STAT3 signaling as well as expression of cell cycle and apoptosis regulatory proteins, associated with inhibition of cell proliferation and induction of apoptosis in medulloblastomas. These findings provide a rationale for treatment of pediatric medulloblastomas with sorafenib.
Assuntos
Antineoplásicos/farmacologia , Apoptose , Benzenossulfonatos/farmacologia , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Piridinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D , Ciclinas/antagonistas & inibidores , Ciclinas/metabolismo , Regulação para Baixo , Humanos , Meduloblastoma/tratamento farmacológico , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides , Niacinamida/análogos & derivados , Compostos de Fenilureia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Sorafenibe , TransfecçãoRESUMO
The immunosuppressive agent leflunomide has been used in the treatment of over 300,000 patients with rheumatoid arthritis. Its active metabolite, teriflunomide (Ter), directly inhibits dihydroorotate dehydrogenase (DHODH), an enzyme involved in nucleoside synthesis. We report that Ter not only shows in vitro anti-proliferative activity in pancreatic cancer (PC) cells as a single agent but also synergizes with the chemotherapeutic gemcitabine (Gem) in growth inhibition of PC cells. The growth-inhibitory effects of Ter are not solely caused by inhibition of DHODH. Through a kinase screening approach, we identified the PIM-3 serine-threonine kinase as a novel direct target. Subsequent dose-response kinase assays showed that Ter directly inhibited all three PIM family members, with the highest activities against PIM-3 and -1. The PIM-3 kinase was the PIM family member most often associated with PC oncogenesis and was also the kinase inhibited the most by Ter among more than 600 kinases investigated. Ter in PC cells induced changes in phosphorylation and expression of PIM downstream targets, consistent with the effects achieved by overexpression or downregulation of PIM-3. Finally, pharmacological inhibition of PIM proteins not only diminished PC cell proliferation, but also small-molecule pan-PIM and PIM-3 inhibitors synergized with Gem in growth inhibition of PC cells.
RESUMO
Many signaling pathways, including the JAK/STAT3 pathway, are aberrantly activated and associated with ovarian cancer growth and progression. However, inhibition of STAT3 pathway alone was not sufficient to effectively block human ovarian cancer cell survival in vitro, which could be due to the activation and compensation of multiple survival pathways. In this study, we investigated a strategy that can enhance antitumor activity of JAK/STAT3 inhibitor by combining with inhibitors targeting other growth and survival pathways. We found that the in vitro activity of JAKi was remarkably increased when additional survival pathway was blocked. Blocking SRC pathway with SRC inhibitor (SRCi) increased the efficacy of JAKi more effectively than blocking AKT or MAPK pathway. The increased activity of JAKi in combination with SRCi is synergistic and associated with attenuation of p-STAT3, p-SRC, p-AKT and p-MAPK and increased inhibition of p-AKT. Simultaneous blockade of multiple survival pathways by combining JAKi with both AKT inhibitor (AKTi) and MEK inhibitor (MEKi) also resulted in a synergistic inhibition of cell survival. Furthermore, the combined treatment of JAKi and SRCi led to an increased apoptosis and greater inhibition of tumor growth and ascites formation. Taken together, our results demonstrate that the antitumor efficacy of JAKi is improved most effectively when combined with SRCi, providing a potential combination strategy for the treatment of advanced ovarian cancer.
RESUMO
CD46 is one of the complement-regulatory proteins expressed on the surface of normal and tumor cells for protection against complement-dependent cytotoxicity. Cancer cells need to access the blood circulation for continued growth and metastasis, thus exposing themselves to destruction by complement system components. Previous studies have established that the signal transducers and activators of transcription 3 (STAT3) transcription factor is persistently activated in a wide variety of human cancer cells and primary tumor tissues compared with their normal counterparts. Using microarray gene expression profiling, we identified the CD46 gene as a target for activated STAT3 signaling in human breast and prostate cancer cells. The CD46 promoter contains two binding sites for activated STAT3 and mutations introduced into the major site abolished STAT3 binding. Chromatin immunoprecipitation confirms binding of STAT3 to the CD46 promoter. CD46 promoter activity is induced by activation of STAT3 and blocked by a dominant-negative form of STAT3 in luciferase reporter assays. CD46 mRNA expression is induced by interleukin-6 and by transient transfection of normal human epithelial cells with a persistently active mutant construct of STAT3, STAT3C. Furthermore, we show that inhibition of STAT3-mediated CD46 cell surface expression sensitizes DU145 prostate cancer cells to cytotoxicity in an in vitro complement lysis assay using rabbit anti-DU145 antiserum and rabbit complement. These results show that activated STAT3 signaling induces the CD46 promoter and protects human cancer cells from complement-dependent cytotoxicity, suggesting a potential mechanism whereby oncogenic signaling contributes to tumor cell evasion of antibody-mediated immunity.