RESUMO
The suppressive activity of monocyte chemoattractant protein 1-induced protein 1 (MCPIP1) an inflammation-related ribonuclease, has been described in a few cancer types but has yet to be assessed in the most common subtype of skin cancer: melanoma. Here, we have evaluated the MCPIP1 expression in melanoma tissues by reanalysis of publicly available transcriptome data from 89 melanoma samples, and immunohistochemical staining of 21 primary and 81 metastatic melanomas. Our data implicated decreased MCPIP1 expression in melanoma tumors compared to normal tissues, and positive correlation between high ribonuclease expression and melanoma-specific survival of patients. To investigate the ribonuclease activity in melanoma cells, MCPIP1 was ectopically expressed in the MV3 human melanoma cell line. Following the transcriptome, proteome, and intracellular signaling of MCPIP1-overexpressing MV3 cells was assessed via real-time quantitative polymerase chain reaction, Western blot analysis, and RNAseq. MV3 cells overexpressing MCPIP1 exhibited a broad range of alterations in the transcriptome and proteome, as well as in the phosphorylation status of a number of proteins, strongly indicating MCPIP1-dependent cell cycle arrest and inhibition of Akt/mTOR signaling in these cells. Moreover, we have shown, that MCPIP1 overexpression downregulates miRNA-193a-3p expression in MV3 cells. Furthermore, the majority of the described effects were dependent on the ribonucleolytic activity of the protein. The presented body of data strongly suggests a potential tumor suppressor role and possible future application as a positive prognostic marker of MCPIP1 protein in melanoma.
Assuntos
Regulação para Baixo , Melanoma/mortalidade , Ribonucleases/genética , Ribonucleases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , MicroRNAs/genética , Fosforilação , Prognóstico , Proteômica , Análise de Sequência de RNA , Transdução de Sinais , Análise de SobrevidaRESUMO
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor originating from the abnormal development of cells of the sympathoadrenal lineage of the neural crest. Targeting GD2 ganglioside (GD2), a glycolipid expressed on neuroblastoma cells, with GD2 ganglioside-recognizing antibodies affects several pivotal signaling routes that drive or influence the malignant phenotype of the cells. Previously performed gene expression profiling helped us to identify the PHLDA1 (pleckstrin homology-like domain family A member 1) gene as the most upregulated gene in the IMR-32 human neuroblastoma cells treated with the mouse 14G2a monoclonal antibody. Mass spectrometry-based proteomic analyses were applied to better characterize a role of PHLDA1 protein in the response of neuroblastoma cells to chimeric ch14.18/CHO antibody. Additionally, global protein expression profile analysis in the IMR-32 cell line with PHLDA1 silencing revealed the increase in biological functions of mitochondria, accompanied by differentiation-like phenotype of the cells. Moreover, mass spectrometry analysis of the proteins co-immunoprecipitated using anti-PHLDA1-specific antibody, selected a group of possible PHLDA1 binding partners. Also, a more detailed analysis suggested that PHLDA1 interacts with the DCAF7/AUTS2 complex, a key component of neuronal differentiation in vitro. Importantly, our results indicate that PHLDA1 silencing enhances the EGF receptor signaling pathway and combinatory treatment of gefitinib and ch14.18/CHO antibodies might be beneficial for neuroblastoma patients. Data are available via ProteomeXchange with the identifier PXD044319.
RESUMO
BACKGROUND: Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1), also known as regnase-1, negatively regulates many cellular processes including the cellular response to inflammatory agents, differentiation, viability, and proliferation. It possesses a PilT N-terminus (PIN) domain that is directly involved in regulating the stability of transcripts and miRNAs by recognizing stem loop structures and degrading them by endonucleolytic cleavage. OBJECTIVE: We investigated the role of MCPIP1 in the response of human primary keratinocytes to UVB stress. METHODS: Keratinocytes were treated with UVB, siRNA against MCPIP1, pharmacological inhibitors of signaling pathways, or subjected to control treatments. The mRNA and protein levels of MCPIP1 and MCPIP1-dependent changes gene expression were analyzed by quantitative (Q)-RT-PCRs and Western blots. Secretion of TNFα and IL-8 was determined by ELISA. RESULTS: UVB treatment of keratinocytes induced upregulation of MCPIP1 at the mRNA level after 4-8h and at the protein level after 8-16h. MCPIP1 abundance depended on NF-κB activity. Using an siRNA strategy, we found that diminished MCPIP1 resulted in an up-regulation of transcripts coding for IL-8, TNFα, COX-2, and BCL-2, as well as an enhanced release of IL-8. Moreover, decreased phosphorylation of NF-κB and p38 signaling pathways were observed in addition to a slight up-regulation of ERK1/2 directly after UVB treatment. Twenty-four hours later, decreased phosphorylation was observed only for NF-κB and p38. Furthermore, in MCPIP1-suppressed cells, the levels of pro-apoptotic Puma, the phosphorylated form of p53 and the abundance of its target p21 as well as the activity of caspase 3 decreased, while the level of cyclin D1 increased. CONCLUSION: MCPIP1 contributes to the UVB response of keratinocytes by altering metabolic and apoptotic processes and the release of inflammatory mediators.
Assuntos
Inflamação/etiologia , Queratinócitos/efeitos da radiação , Ribonucleases/fisiologia , Fatores de Transcrição/fisiologia , Células Cultivadas , Humanos , Interleucina-8/genética , NF-kappa B/fisiologia , Ribonucleases/análise , Ribonucleases/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologiaRESUMO
Pattern recognition receptors are critical for the detection of invading microorganisms. They activate multiple pathways that lead to the induction of proinflammatory responses and pathogen clearance. The intensity and duration of this immune reaction must be tightly controlled spatially and temporally in every tissue by different negative regulators. We hypothesized that monocyte chemoattractant protein-1-induced protein-1 (MCPIP-1) might play a role in maintaining immune homeostasis in the epithelium both under physiological conditions and upon bacterial infection. To this end, we examined the distribution of the MCPIP-1 transcript and protein in various tissues. The MCPIP-1 protein level was higher in epithelial cells than in myeloid cells. MCPIP-1 exerted RNase activity towards the interleukin (IL)-8 transcript and the lifespan of IL-8 was determined by the presence of the stem-loops/hairpin structures at the 3'UTR region of IL-8 mRNA. Moreover, using fully active, purified recombinant MCPIP-1 protein, we elucidated the mechanism by which MCPIP-1 controls the IL-8 mRNA level. In conclusion, we uncovered a novel IL-8-dependent mechanism via which MCPIP-1 maintains epithelial homeostasis. This study reveals for the first time that MCPIP-1 plays a crucial anti-inflammatory role not only in myeloid cells but also in epithelial cells.
Assuntos
Células Epiteliais/imunologia , Inflamação/imunologia , Interleucina-8/metabolismo , Células Mieloides/imunologia , RNA Mensageiro/genética , Ribonucleases/metabolismo , Pele/imunologia , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas/genética , Infecções Bacterianas/imunologia , Células HEK293 , Células HeLa , Homeostase , Humanos , Interleucina-8/genética , Sequências Repetidas Invertidas/genética , Processamento de Proteína Pós-Traducional , Ribonucleases/genética , Fatores de Transcrição/genéticaRESUMO
ZC3H12A, which encodes the RNase monocyte chemotactic protein-induced protein 1 (MCPIP1), is up-regulated in psoriatic skin and reduced to normal levels after clinical treatments with anti-IL-17A/IL-17R neutralizing antibodies. In IL-17A-stimulated keratinocytes, MCPIP1 is rapidly increased at the transcript and protein levels. Also, IL-17A was found to be the main inducer of ZC3H12A expression in keratinocytes treated with supernatants derived from a Streptococcus pyogenes-activated psoriatic ex vivo model based on the co-culture of psoriatic cutaneous lymphocyte-associated antigen (CLA(+)) T cells and lesional epidermal cells. Moreover, MCPIP1 was aberrantly distributed in the suprabasal layers of psoriatic epidermis. In psoriatic samples, IL-17A-stimulated epidermal cell suspensions showed an increased MCPIP1 expression, especially in the mid-differentiated cellular compartment. The knockdown of ZC3H12A showed that this RNase participates in the regulation of the mRNAs present in suprabasal differentiated keratinocytes. Furthermore, JAK/STAT3 inhibition prevented the IL-17A-dependent induction of MCPIP1. In the mouse model of imiquimod-induced psoriasis, Zc3h12a expression was abrogated in Il17ra(-/-) mice. These results support the notion that IL-17A-mediated induction of MCPIP1 is involved in the regulation of local altered gene expression in suprabasal epidermal layers in psoriasis.