Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(7): 076401, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857568

RESUMO

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.

2.
Phys Rev Lett ; 125(21): 216402, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274982

RESUMO

Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.

3.
Phys Rev Lett ; 117(23): 237601, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982645

RESUMO

The complex electronic properties of ZrTe_{5} have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of ZrTe_{5}, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of ZrTe_{5}.

4.
Phys Rev Lett ; 115(20): 207402, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26613470

RESUMO

We report on the temperature dependence of the ZrTe(5) electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T*∼160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe(5).

5.
Phys Rev Lett ; 114(9): 097401, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793848

RESUMO

The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

6.
Phys Rev Lett ; 109(9): 096803, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002871

RESUMO

We observe a giant spin-orbit splitting in the bulk and surface states of the noncentrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cases, it intersects spin-polarized bands, in the corresponding surface depletion and accumulation layers. The momentum splitting of these bands is not affected by adsorbate-induced changes in the surface potential. These findings demonstrate that two properties crucial for enabling semiconductor-based spin electronics-a large, robust spin splitting and ambipolar conduction-are present in this material.

7.
Schweiz Arch Tierheilkd ; 152(12): 561-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21104630

RESUMO

Data of 13'469 blood samples from 10'999 dogs and 2'470 cats tested for rabies neutralizing antibodies within the framework of pet travel schemes were analysed for single and combined factors influencing antibody titres and failures. The time span between vaccination and drawing the blood sample was confirmed as a major source of failure in dogs with a proportion of 23 % at 4 months after primary vaccination (single dose). Failures in dogs and cats (titre < 0.5 IU) were significantly reduced after double primary vaccination (2 doses within 7 - 10 days), although failures reached comparable levels in dogs as early as 6 months after vaccination. In contrast, failure after vaccination was generally below 5 % in dogs and absent in cats after a booster applied at earliest 12 months after single primary vaccination. Statistically significant differences between the failures of the vaccine brands «Rabisin¼ (1.5 %), «Defensor¼ (6.7 %), «Nobivac Rabies¼ (11.0 %) and «Rabdomun¼ (18.2 %) were found in dogs but also between the titres induced in cats. Significant differences were found between different dog breeds with some small breeds showing a significantly higher responsiveness. Taken together, a new regimen for rabies vaccination consisting of double primary vaccination with a short interval of 7 - 10 days and a one-year booster appears to be highly recommended for dogs and cats.


Assuntos
Raiva/transmissão , Animais , Doenças do Gato/virologia , Gatos , Transmissão de Doença Infecciosa/estatística & dados numéricos , Doenças do Cão/virologia , Cães , Imunização Secundária/veterinária , Vacina Antirrábica , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA