Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(22): 13009-13018, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31525033

RESUMO

The molecular-level composition and structure of organic aerosol (OA) affect its chemical/physical properties, transformations, and impacts. Here, we use the molecular-level chemical composition of functionalized OA from three diverse field sites to evaluate the effect of molecular-level compositional variability on OA phase state and thermodynamic mixing favorability. For these ambient sites, modeled aerosol phase state ranges from liquid to semisolid. The observed variability in OA composition has some effect on resulting phase state, but other factors like the presence of inorganic ions, aerosol liquid water, and internal versus external mixing with water are determining factors in whether these particles exist as liquids, semisolids, or solids. Organic molecular composition plays a more important role in determining phase state for phase-separated (verus well-mixed) systems. Similarly, despite the observed OA compositional differences, the thermodynamic mixing favorability for OA samples with aerosol liquid water, isoprene oxidation products, or monoterpene oxidation products remains fairly consistent within each campaign. Mixing of filter-sampled OA and isoprene or monoterpene oxidation products is often favorable in both seasons, while mixing with water is generally unfavorable.


Assuntos
Água , Aerossóis , Oxirredução , Estações do Ano , Termodinâmica
2.
Sci Total Environ ; 838(Pt 2): 155861, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568171

RESUMO

The population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O3) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San Antonio which are affected by a complex mixture of industry, traffic, biogenic sources and transported pollutants. The goal of the SAFS campaign in May 2017 was to measure inorganic trace gases, VOCs, methane (CH4), and ethane (C2H6). The SAFS field design included two sites to better assess air quality across the metro area: an urban site (Traveler's World; TW) and a downwind/suburban site (University of Texas at San Antonio; UTSA). The results indicated that acetone (2.52 ± 1.17 and 2.39 ± 1.27 ppbv), acetaldehyde (1.45 ± 1.02 and 0.93 ± 0.45 ppbv) and isoprene (0.64 ± 0.49 and 1.21 ± 0.85 ppbv; TW and UTSA, respectively) were the VOCs with the highest concentrations. Additionally, positive matrix factorization showed three dominant factors of VOC emissions: biogenic, aged urban mixed source, and acetone. Methyl vinyl ketone and methacrolein (MVK + MACR) exhibited contributions from both secondary photooxidation of isoprene and direct emissions from traffic. The C2H6:CH4 demonstrated potential influence of oil and gas activities in San Antonio. Moreover, the high O3 days during the campaign were in the NOx-limited O3 formation regime and were preceded by evening peaks in select VOCs, NOx and CO. Overall, quantification of the concentration and trends of VOCs and trace gases in a major city in Texas offers vital information for general air quality management and supports strategies for reducing O3 pollution. The SAFS campaign VOC results will also add to the growing body of literature on urban sources and concentrations of VOCs in major urban areas.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Acetona , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Texas , Compostos Orgânicos Voláteis/análise
3.
Ann N Y Acad Sci ; 980: 225-35, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12594092

RESUMO

One of the challenges of developing patient education content in electronic form is to determine the information and interaction needs that motivate a patient to learn in the first place. We have found that use case analysis of patient education helps in clarifying the types of information and interaction required to educate a patient effectively. This paper presents a use case model for patient education as well as a Java-based framework that facilitates both the extension and updating of individually tailored, electronic patient education content. The framework defines an abstract interface that represents a particular panel of information, and provides a content manager that dynamically discovers and refreshes new panels as they are added or modified.


Assuntos
Educação de Pacientes como Assunto/métodos , Biologia Computacional , Desenho Assistido por Computador , Atenção à Saúde , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA