Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(45): 22556-22566, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31624123

RESUMO

The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.


Assuntos
Membrana Celular/virologia , Proteína gp41 do Envelope de HIV/química , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Membrana Celular/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/imunologia , Domínios Proteicos
2.
Sensors (Basel) ; 19(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717095

RESUMO

The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a -6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications.

3.
Nature ; 475(7356): 343-7, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21776080

RESUMO

Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Bacteriólise , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Interações Microbianas , Pseudomonas aeruginosa/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Hidrólise , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Peptidoglicano/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , Especificidade por Substrato
4.
Mol Microbiol ; 97(5): 866-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26010014

RESUMO

Beta-lactam resistant clinical isolates of Streptococcus pneumoniae contain altered penicillin-binding protein (PBP) genes and occasionally an altered murM, presumably products of interspecies gene transfer. MurM and MurN are responsible for the synthesis of branched lipid II, substrate for the PBP catalyzed transpeptidation reaction. Here we used the high-level beta-lactam resistant S. oralis Uo5 as donor in transformation experiments with the sensitive laboratory strain S. pneumoniae R6 as recipient. Surprisingly, piperacillin-resistant transformants contained no alterations in PBP genes but carried murEUo5 encoding the UDP-N-acetylmuramyl tripeptide synthetase. Codons 83-183 of murEUo5 were sufficient to confer the resistance phenotype. Moreover, the promoter of murEUo5 , which drives a twofold higher expression compared to that of S. pneumoniae R6, could also confer increased resistance. Multiple independent transformations produced S. pneumoniae R6 derivatives containing murEUo5 , pbp2xUo5 , pbp1aUo5 and pbp2bUo5 , but not murMUo5 sequences; however, the resistance level of the donor strain could not be reached. S. oralis Uo5 harbors an unusual murM, and murN is absent. Accordingly, the peptidoglycan of S. oralis Uo5 contained interpeptide bridges with one L-Ala residue only. The data suggest that resistance in S. oralis Uo5 is based on a complex interplay of distinct PBPs and other enzymes involved in peptidoglycan biosynthesis.


Assuntos
Proteínas de Bactérias/genética , Resistência às Penicilinas/genética , Streptococcus oralis/efeitos dos fármacos , Streptococcus oralis/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Transformação Genética , Sequência de Aminoácidos , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Ligação às Penicilinas/genética , Peptídeo Sintases/genética , Peptidoglicano/biossíntese , Peptidoglicano/química , Peptidoglicano/genética , Peptidil Transferases/genética , Piperacilina/metabolismo , beta-Lactamas/metabolismo
5.
EMBO J ; 30(24): 4931-41, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21964069

RESUMO

Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR-Cps2A-Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Parede Celular/química , Polissacarídeos/biossíntese , Ácidos Teicoicos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Genes Letais , Mutação , Polissacarídeos/química , Polissacarídeos/genética , Ácidos Teicoicos/química , Ácidos Teicoicos/genética
6.
PLoS Pathog ; 8(1): e1002508, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22303291

RESUMO

The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT) and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD). The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase--presumably the lipid phase--of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.


Assuntos
Genes Bacterianos/genética , Ácido Glutâmico/metabolismo , Peptidoglicano/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
PLoS Pathog ; 8(2): e1002524, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346754

RESUMO

Bdellovibrio are predatory bacteria that have evolved to invade virtually all gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound ß-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that "regular" PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication.


Assuntos
Bdellovibrio/enzimologia , Escherichia coli/ultraestrutura , Aptidão Genética/genética , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio/genética , Bdellovibrio/crescimento & desenvolvimento , Bdellovibrio/patogenicidade , Domínio Catalítico , Cristalização , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Mutação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , Periplasma/microbiologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Tempo
8.
Prog Mol Biol Transl Sci ; 203: 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359993

RESUMO

RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the "RNA therapeutics" book.


Assuntos
Sistemas de Liberação de Medicamentos , Oligonucleotídeos Antissenso , Humanos , RNA Interferente Pequeno , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
9.
Artigo em Inglês | MEDLINE | ID: mdl-38178303

RESUMO

Large language models (LLMs) such as ChatGPT have emerged as potential game-changers in nursing, aiding in patient education, diagnostic assistance, treatment recommendations, and administrative task efficiency. While these advancements signal promising strides in healthcare, integrated LLMs are not without challenges, particularly artificial intelligence hallucination and data privacy concerns. Methodologies such as prompt engineering, temperature adjustments, model fine-tuning, and local deployment are proposed to refine the accuracy of LLMs and ensure data security. While LLMs offer transformative potential, it is imperative to acknowledge that they cannot substitute the intricate expertise of human professionals in the clinical field, advocating for a synergistic approach in patient care.

10.
Heliyon ; 10(2): e24691, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304811

RESUMO

Background & aims: Probiotics are alive and beneficial bacteria used as food complements with sufficient amounts to improve and balance the intestinal flora in the human gastrointestinal tract and inhibit harmful microorganisms. In this study, we conducted experiments to evaluate he safety and the effect of one of our probiotics on selected biochemical parameters in animal models. Methods: LabMix is a probiotic product containing three bacterial strains, including Lactobacillus acidophilus LA 304.17, Lactobacillus casei LC 304.08, and Bifidobacterium bifidum BF 304.98, with a density of 9 × 109 CFU/g and being mixed with suitable excipients. In this study, we conducted experiments to evaluate LabMix's acute ttoxicity in mice as well as subchronic toxicity in rats. Results: The LD50 dose in mice of this product could not be determined since no death or disorder was recorded. In rats receiving LabMix with doses of 2.52 × 109 CFU/kg and 12.6 × 109 CFU/kg continuously for 28 days, this product caused no significant changes in the amount of red and white blood cells and platelets. Similarly, no significant changes were recorded in serum concentrations of hemoglobin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose, protein, cholesterol, bilirubin, and creatinine. Besides, LabMix products also did not cause any changes in the histology of the liver, kidney, and spleen in rats. Moreover, LabMix was well tolerated without affecting the normal growth and feeding of rats. Furthermore, LabMix also decreased serum cytokines and increased serum and gut mucosal IgA antibodies. Conclusions: LabMix product is possibly considered safe for human., and this sproduct reduced the release of pro-inflammatory cytokines (IL-6 and TNF-α), but increased IgA levels. However, it is necessary to further evaluate the product's effectiveness in the preclinical phase as well as in further phases before mass production and commercialization.

11.
Prog Mol Biol Transl Sci ; 207: 321-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942542

RESUMO

Obesity, diabetes, and other metabolic disorders place a huge burden on both the physical health and financial well-being of the community. While the need for effective treatment of metabolic disorders remains urgent and the reality is that traditional drug development involves high costs and a very long time with many pre-clinical and clinical trials, the need for drug repurposing has emerged as a potential alternative. Scientific evidence has shown the anti-diabetic and anti-obesity effects of old drugs, which were initially utilized for the treatment of inflammation, depression, infections, and even cancers. The drug library used modern technological methods to conduct drug screening. Computational molecular docking, genome-wide association studies, or omics data mining are advantageous and unavoidable methods for drug repurposing. Drug repurposing offers a promising avenue for economic efficiency in healthcare, especially for less common metabolic diseases, despite the need for rigorous research and validation. In this chapter, we aim to explore the scientific, technological, and economic issues surrounding drug repurposing for metabolic disorders. We hope to shed light on the potential of this approach and the challenges that need to be addressed to make it a viable option in the treatment of metabolic disorders, especially in the future fight against metabolic disorders.


Assuntos
Reposicionamento de Medicamentos , Doenças Metabólicas , Humanos , Doenças Metabólicas/tratamento farmacológico , Animais
12.
Prog Mol Biol Transl Sci ; 203: 225-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38360000

RESUMO

The study of small RNAs is a field that is expanding quickly. Other functional short RNA molecules other than microRNAs, and gene expression regulators, have been found in animals and plants. MicroRNAs play a significant role in host-microbe interactions, and parasite microRNAs may affect the host's innate immunity. Furthermore, short RNAs are intriguing non-invasive biomarker possibilities because they can be found in physiological fluids. These trends suggest that for many researchers, quick and simple techniques for expression profiling and subsequent downstream analysis of miRNA-seq data are crucial. We selected sRNAtoolbox to make integrated sRNA research easier. Each tool can be used separately or to explore and analyze sRNAbench results in further depth. A special focus was placed on the tools' usability. We review available miRNA research tools to have an overview of the evaluation of the tools. Mainly we evaluate the tool sRNAtoolbox.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Software , Plantas/genética , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos
13.
RSC Adv ; 14(20): 14114-14125, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686288

RESUMO

In this work, twenty-four stable dimers of RCHZ with R = H, F, Cl, Br, CH3 or NH2 and Z = O, S, Se or Te were determined. It was found that the stability of most dimers is primarily contributed by the electrostatic force, except for the dominant role of the induction term in those involving a Te atom, which has been rarely observed. Both electron-donating and -withdrawing groups in substituted formaldehyde cause an increase in the strength of nonconventional Csp2-H⋯Z hydrogen bonds, as well as the dimers, in which the electron donating effect plays a more crucial role. The strength of nonconventional hydrogen bonds decreases in the following order: Csp2-H⋯O ≫ Csp2-H⋯S > Csp2-H⋯Se > Csp2-H⋯Te. Remarkably, a highly significant role of the O atom compared to S, Se and Te in increasing the Csp2-H stretching frequency and strength of the nonconventional hydrogen bonds and dimers is found. A Csp2-H stretching frequency red-shift is observed in Csp2-H⋯S/Se/Te, while a blue-shift is obtained in Csp2-H⋯O. When Z changes from O to S to Se and to Te, the Csp2-H blue-shift tends to decrease and eventually turns to a red-shift, in agreement with the increasing order of the proton affinity at Z in the isolated monomer. The magnitude of the Csp2-H stretching frequency red-shift is larger for Csp2-H⋯Te than Csp2-H⋯S/Se, consistent with the rising trend of proton affinity at the Z site and the polarity of the Csp2-H bond in the substituted chalcogenoaldehydes. The Csp2-H blue-shifting of the Csp2-H⋯O hydrogen bonds is observed in all dimers regardless of the electron effect of the substituents. Following complexation, the electron-donating derivatives exhibit a stronger Csp2-H blue-shift compared to the electron-withdrawing ones. Notably, the stronger Csp2-H blue-shift turns out to involve a less polarized Csp2-H bond and a decrease in the occupation at the σ*(Csp2-H) antibonding orbital in the isolated monomer.

14.
Reumatol Clin (Engl Ed) ; 20(3): 128-135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494304

RESUMO

OBJECTIVES: To describe the status of using biological Disease Modifying Anti Rheumatic Drugs (bDMARDs) to treat rheumatoid arthritis (RA) and related factors. In addition, the study determined the impact of COVID-19 on the usage of bDMARDs. METHODS: This is a cross-sectional study and included 219 RA patients over 18 years old. The Kaplan-Meier method and the log-rank test (p<0.05) were used to estimate the retention time and compare between different times. Cox regression analysis was used to determine the factors affecting the retention time of biological drugs (p<0.05). RESULTS: Out of 1967 courses of treatment, there were 149 (7.6%) drug discontinuations, 760 (38.6%) doses extensions and 64 (3.3%) drug switch. Moderate disease level and choosing tumor necrosis factor (TNF) inhibitors initially were associated with retention time of COVID-19. Drug discontinuations and dose extensions increased after COVID-19 emergence. The retention time during COVID-19 was significantly different from that of pre-COVID-19. Gender, type of first-used bDMARD, conventional synthetic DMARDs (csDMARDs) and corticoid usage status, disease activity levels were associated with retention time. CONCLUSION: The presence of COVID-19 has a significant effect on usage status of the biologic drug. Further longitudinal studies are needed to clarify the relationship between COVID-19 and drug usage as well as related factors.


Assuntos
Antirreumáticos , Artrite Reumatoide , Produtos Biológicos , COVID-19 , Humanos , Adolescente , Vietnã , Estudos Transversais , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/uso terapêutico , Produtos Biológicos/uso terapêutico
15.
J Biol Chem ; 287(19): 15242-50, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22418438

RESUMO

Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Alanina/metabolismo , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Fatores de Virulência/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Alanina/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Transporte Biológico , Linhagem Celular , Feminino , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética
16.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2468-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311588

RESUMO

Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-D-glutamic acid and L-meso-diaminopimelic acid with different specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure-activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1-Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2-Rap2a orthologues suggest that the specificity of these immunity proteins for neutralizing effectors is fold-dependent and that in cases where the fold is conserved sequence differences contribute to the specificity of effector-immunity protein interactions.


Assuntos
Sistemas de Secreção Bacterianos , Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Serratia marcescens/enzimologia , Serratia marcescens/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Serratia marcescens/química , Especificidade por Substrato
17.
Prog Mol Biol Transl Sci ; 194: 311-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631196

RESUMO

Obesity, considered a metabolic disorder, is one of the most significant health issues that the community has to cope with today. A rising number of studies have been conducted to find out promising genetic targets for obese treatment. The sympathetic nervous system was proven to possess remarkable roles in energy metabolism, including the stimulation of lipolysis as well as thermogenesis, via distinct adrenoceptors appearing on the membrane of adipocyte. A decrease of ß-adrenoceptor expression has been observed in obese individuals, which is related to reducing energy expenditure and developing obesity. While that the deficiency of stearoyl-CoA desaturase-1 (SCD1), which is a promising target for treatments of metabolic diseases, decreases oxidation and promotes the synthesis of fatty acids. Here, we emphasized several differences between distinct adrenoceptor subtypes, including their mRNA expression level and function in white adipose tissue and brown adipose tissue. We also highlighted SCD1's roles related to the progression of adipocytes and its changing expression under the obese condition in both rodents and humans, and furthermore, tried to figure out the interaction between adrenoceptors and SCD1 in adipose tissue.


Assuntos
Tecido Adiposo , Obesidade , Receptores Adrenérgicos , Estearoil-CoA Dessaturase , Humanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Obesidade/metabolismo , Receptores Adrenérgicos/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
18.
Prog Mol Biol Transl Sci ; 197: 153-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37019591

RESUMO

Due to the fact that the upward trend of several metabolic disorders such as diabetes and obesity, in individuals especially monozygotic twins, who are under the same effects from the environment, are not similar, the role of epigenetic elements like DNA methylation needs taking into account. In this chapter, emerging scientific evidence supporting the strong relationship between changes in DNA methylation and those diseases' development was summarized. Changing in the expression level of diabetes/obesity-related genes through being silenced by methylation can be the underlying mechanism of this phenomenon. Genes with abnormal methylation status are potential biomarkers for early prediction and diagnosis. Moreover, methylation-based molecular targets should be investigated as a new treatment for both T2D and obesity.


Assuntos
Metilação de DNA , Diabetes Mellitus , Humanos , Epigênese Genética , Obesidade , Biomarcadores
19.
Prog Mol Biol Transl Sci ; 201: 241-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37770175

RESUMO

Phage or bacteriophage is a specific virus with the ability to defeat bacteria. Because of the rising prevalence of antimicrobial-resistant bacteria, the bacteriophage is now receiving interest again, with it application in skin infection or acne treatment. Moreover, bacteriophages also express their efficacy in wound healing or skin regeneration. Thanks to the development of bioengineering technology, phage display, which is a technique using bacteriophage as a tool, has recently been applied in many biotechnological and medical fields, especially in regenerative medicines. Bacteriophages can be used as nanomaterials, delivery vectors, growth factor alternatives, or in several bacteriophage display-derived therapeutics and stem cell technology. Although bacteriophage is no doubt to be a potential and effective alternative in modern medicine, there are still controversial evidence about the antibacterial efficacy as well as the affinity to expected targets of bacteriophage. Future mission is to optimize the specificity, stability, affinity and biodistribution of phage-derived substances. In this chapter, we focused on introducing several mechanisms and applications of bacteriophage and analyzing its future potential in regenerative medicines as well as cosmetics via previous research's results.

20.
Redox Biol ; 61: 102654, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889081

RESUMO

2-aminoethoxydiphenyl borate (2-APB) is commonly used as a tool to modulate calcium signaling in physiological studies. 2-APB has a complex pharmacology and acts as activator or inhibitor of a variety of Ca2+ channels and transporters. While unspecific, 2-APB is one of the most-used agents to modulate store-operated calcium entry (SOCE) mediated by the STIM-gated Orai channels. Due to its boron core structure, 2-APB tends to readily hydrolyze in aqueous environment, a property that results in a complex physicochemical behavior. Here, we quantified the degree of hydrolysis in physiological conditions and identified the hydrolysis products diphenylborinic acid and 2-aminoethanol by NMR. Notably, we detected a high sensitivity of 2-APB/diphenylborinic acid towards decomposition by hydrogen peroxide to compounds such as phenylboronic acid, phenol, and boric acid, which were, in contrast to 2-APB itself and diphenylborinic acid, insufficient to affect SOCE in physiological experiments. Consequently, the efficacy of 2-APB as a Ca2+ signal modulator strongly depends on the reactive oxygen species (ROS) production within the experimental system. The antioxidant behavior of 2-APB towards ROS and its resulting decomposition are inversely correlated to its potency to modulate Ca2+ signaling as shown by electron spin resonance spectroscopy (ESR) and Ca2+ imaging. Finally, we observed a strong inhibitory effect of 2-APB, i.e., its hydrolysis product diphenylborinic acid, on NADPH oxidase (NOX2) activity in human monocytes. These new 2-APB properties are highly relevant for Ca2+ and redox signaling studies and for pharmacological application of 2-APB and related boron compounds.


Assuntos
Canais de Cálcio , Sinalização do Cálcio , Humanos , Canais de Cálcio/metabolismo , NADPH Oxidase 2 , Espécies Reativas de Oxigênio/farmacologia , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA