Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 125(6): 1266-75, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19533749

RESUMO

Analogs of the malaria therapeutic, artemisinin, possess in vitro and in vivo anticancer activity. In this study, two dimeric artemisinins (NSC724910 and 735847) were studied to determine their mechanism of action. Dimers were >1,000 fold more active than monomer and treatment was associated with increased reactive oxygen species (ROS) and apoptosis induction. Dimer activity was inhibited by the antioxidant L-NAC, the iron chelator desferroxamine and exogenous hemin. Similarly, induction of heme oxygenase (HMOX) with CoPPIX inhibited activity, whereas inhibition of HMOX with SnPPIX enhanced it. These results emphasize the importance of iron, heme and ROS in activity. Microarray analysis of dimer treated cells identified DNA damage, iron/heme and cysteine/methionine metabolism, antioxidant response, and endoplasmic reticulum (ER) stress as affected pathways. Detection of an ER-stress response was relevant because in malaria, artemisinin inhibits pfATP6, the plasmodium orthologue of mammalian sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA). A comparative study of NSC735847 with thapsigargin, a specific SERCA inhibitor and ER-stress inducer showed similar behavior in terms of transcriptomic changes, induction of endogenous SERCA and ER calcium mobilization. However, thapsigargin had little effect on ROS production, modulated different ER-stress proteins and had greater potency against purified SERCA1. Furthermore, an inactive derivative of NSC735847 that lacked the endoperoxide had identical inhibitory activity against purified SERCA1, suggesting that direct inhibition of SERCA has little inference on overall cytotoxicity. In summary, these data implicate indirect ER-stress induction as a central mechanism of artemisinin dimer activity.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Artemisia/química , Biomarcadores/metabolismo , Western Blotting , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Dimerização , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Humanos , Lisina/análogos & derivados , Lisina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia
2.
Clin Cancer Res ; 13(12): 3667-81, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575232

RESUMO

PURPOSE: Activities distinct from inhibition of Bcr/abl have led to adaphostin (NSC 680410) being described as "a drug in search of a mechanism." In this study, proteomic analysis of adaphostin-treated myeloid leukemia cell lines was used to further elucidate a mechanism of action. EXPERIMENTAL DESIGN: HL60 and K562 cells treated with adaphostin for 6, 12, or 24 h were analyzed using two-dimensional PAGE. Differentially expressed spots were excised, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry. The contribution of the redox-active hydroquinone group in adaphostin was also examined by carrying out proteomic analysis of HL60 cells treated with a simple hydroquinone (1,4-dihydroxybenzene) or H(2)O(2). RESULTS: Analysis of adaphostin-treated cells identified 49 differentially expressed proteins, the majority being implicated in the response to oxidative stress (e.g., CALM, ERP29, GSTP1, PDIA1) or induction of apoptosis (e.g., LAMA, FLNA, TPR, GDIS). Interestingly, modulation of these proteins was almost fully prevented by inclusion of an antioxidant, N-acetylcysteine. Validation of the proteomic data confirmed GSTP1 as an adaphostin resistance gene. Subsequent analysis of HL60 cells treated with 1,4-dihydroxybenzene or H(2)O(2) showed similar increases in intracellular peroxides and an almost identical proteomic profiles to that of adaphostin treatment. Western blotting of a panel of cell lines identified Cu/Zn superoxide dismutase (SOD) as correlating with adaphostin resistance. The role of SOD as a second adaphostin resistance gene was confirmed by demonstrating that inhibition of SOD using diethyldithiocarbamate increased adaphostin sensitivity, whereas transfection of SOD I attenuated toxicity. Importantly, treatment with 1,4-dihydroxybenzene or H(2)O(2) replicated adaphostin-induced Bcr/abl polypeptide degradation, suggesting that kinase inhibition is a ROS-dependent phenomenon. CONCLUSION: Adaphostin should be classified as a redox-active-substituted dihydroquinone.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Hidroquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Adamantano/classificação , Adamantano/farmacologia , Antineoplásicos/classificação , Western Blotting , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Células HL-60 , Humanos , Hidroquinonas/classificação , Oxidantes/classificação , Oxidantes/farmacologia , Proteômica
3.
J Proteome Res ; 5(11): 2996-3007, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17081051

RESUMO

Hypoxic conditions often persist within poorly vascularized tumors. At the cellular level constitutive activation of transcriptional regulators of the hypoxic response leads to the emergence of clones with aggressive phenotypes. The primary interface between the cell and the hypoxic environment is the plasma membrane. A detailed investigation of this organelle is expected to yield further targets for therapeutic perturbation of the response to hypoxia. In the present study, quantitative proteomic analysis of plasma membrane from hypoxia-adapted murine B16F10 melanoma was performed using differential 16O/18O stable isotopic labeling and multidimensional liquid chromatography-tandem mass spectrometry. The analysis resulted in the identification of 24,853 tryptic peptides, providing quantitative information for 2,433 proteins. For a subset of plasma membrane and secreted proteins, quantitative RT-PCR was used to gain further insight into the genomic regulatory events underlying the response to hypoxia. Consistent increases at the proteomic and transcriptomic levels were observed for aminopeptidase N (CD13), carbonic anhydrase IX, potassium-transporting ATPase, matrix metalloproteinase 9, and stromal cell derived factor I (SDF-1). Antibody-based analysis of a panel of human melanoma cell lines confirmed that CD13 and SDF-1 were consistently upregulated during hypoxia. This study provides the basis for the discovery of novel hypoxia-induced membrane proteins.


Assuntos
Proteínas de Membrana/química , Proteínas de Neoplasias/química , Proteômica/métodos , Sequência de Aminoácidos , Apoptose , Divisão Celular , Hipóxia Celular , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/patologia , Cromatografia por Troca Iônica , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Dados de Sequência Molecular , Necrose , Proteínas de Neoplasias/genética , Isótopos de Oxigênio , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/genética
4.
Proteomics ; 3(5): 675-88, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12748947

RESUMO

Homeostasis of the intracellular ionic concentration, in particular that of hydrogen ions, is pivotal to the maintenance of cell function and viability. Nonetheless, pH fluctuations in both the intracellular and the extracellular compartments can occurr during development, in physiological processes and in disease. The influence of pH variations on gene expression has been studied in different model systems, but only for a limited number of genes. We have performed a broad range analysis of the patterns of gene expression in normal human dermal fibroblasts at two different pH values (in the presence and in the absence of serum), with the aim of getting a deeper insight into the regulation of the transcriptional program as a response to a pH change. Using the Affymetrix gene chip system, we found that the expression of 2068 genes (out of 12 565) was modulated by more than two-fold at 24, 48 or 72 h after the shift of the culture medium pH to a more acidic value, stanniocalcin 1 being a remarkable example of a strongly up-regulated gene. Genes displaying a modulated pattern of expression included, among others, cell cycle regulators (consistent with the observation that acidic pH abolishes the growth of fibroblasts in culture) and relevant extracellular matrix (ECM) components. Extracellular matrix protein 2, a protein with a restricted pattern of expression in adult human tissues, was found to be remarkably overexpressed as a consequence of serum starvation. Since ECM components, whose expression is controlled by pH, have been used as targets for biomolecular intervention, we have complemented the Affymetrix analysis with a two-dimensional polyacrylamide gel electrophoresis analysis of proteins which are differentially secreted by fibroblasts at acidic or basic pH. Mass spectrometric analysis of more than 650 protein spots allowed the identification of 170 protein isoforms or fragments, belonging to 40 different proteins. Some proteins were only expressed at basic pH (including, for instance, tetranectin), while others (e.g., agrin) were only detectable at acidic pH. Some of the identified proteins may represent promising candidate targets for biomedical applications, e.g., for antibody-mediated vascular targeting strategies.


Assuntos
Fibroblastos/metabolismo , Proteômica/métodos , Células Cultivadas , Meios de Cultura , Eletroforese em Gel Bidimensional , Líquido Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/isolamento & purificação , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA