RESUMO
The experimental demonstration of a p-type 2D WSe2 transistor with a ferroelectric perovskite BaTiO3 gate oxide is presented. The 30 nm thick BaTiO3 gate stack shows a robust ferroelectric hysteresis with a remanent polarization of 20 µC/cm2 and further enables a capacitance equivalent thickness of 0.5 nm in the hybrid WSe2/BaTiO3 stack due to its high dielectric constant of 323. We demonstrate one of the best ON currents for perovskite gate 2D transistors in the literature. This is enabled by high-quality epitaxial growth of BaTiO3 and a single 2D layer transfer based fabrication method that is shown to be amenable to silicon platforms. This demonstration is an important milestone toward the integration of crystalline complex oxides with 2D channel materials for scaled CMOS and low-voltage ferroelectric logic applications.
RESUMO
Ferroelectric HfO2-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO2-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 µC cm-2 has been observed at room temperature in Y-doped HfO2(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 µC cm-2, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca21 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO2-based materials, optimizing their performance in device applications.
RESUMO
HfO2-based thin films hold huge promise for integrated devices as they show full compatibility with semiconductor technologies and robust ferroelectric properties at nanometer scale. While their polarization switching behavior has been widely investigated, their electromechanical response received much less attention so far. Here, we demonstrate that piezoelectricity in Hf0.5Zr0.5O2 ferroelectric capacitors is not an invariable property but, in fact, can be intrinsically changed by electrical field cycling. Hf0.5Zr0.5O2 capacitors subjected to ac cycling undergo a continuous transition from a positive effective piezoelectric coefficient d33 in the pristine state to a fully inverted negative d33 state, while, in parallel, the polarization monotonically increases. Not only can the sign of d33 be uniformly inverted in the whole capacitor volume, but also, with proper ac training, the net effective piezoresponse can be nullified while the polarization is kept fully switchable. Moreover, the local piezoresponse force microscopy signal also gradually goes through the zero value upon ac cycling. Density functional theory calculations suggest that the observed behavior is a result of a structural transformation from a weakly-developed polar orthorhombic phase towards a well-developed polar orthorhombic phase. The calculations also suggest the possible occurrence of a non-piezoelectric ferroelectric Hf0.5Zr0.5O2. Our experimental findings create an unprecedented potential for tuning the electromechanical functionality of ferroelectric HfO2-based devices.
RESUMO
Piezoresponse force microscopy (PFM) is widely used for characterization and exploration of the nanoscale properties of ferroelectrics. However, quantification of the PFM signal is challenging due to the convolution of various extrinsic and intrinsic contributions. Although quantification of the PFM amplitude signal has received considerable attention, quantification of the PFM phase signal has not been addressed. A properly calibrated PFM phase signal can provide valuable information on the sign of the local piezoelectric coefficient-an important and nontrivial issue for emerging ferroelectrics. In this work, two complementary methodologies to calibrate the PFM phase signal are discussed. The first approach is based on using a standard reference sample with well-known independently measured piezoelectric coefficients, while the second approach exploits the electrostatic sample-cantilever interactions to determine the parasitic phase offset. Application of these methodologies to studies of the piezoelectric behavior in ferroelectric HfO2 -based thin-film capacitors reveals intriguing variations in the sign of the longitudinal piezoelectric coefficient, d33,eff . It is shown that the piezoelectric properties of the HfO2 -based capacitors are inherently sensitive to their thickness, electrodes, as well as deposition methods, and can exhibit wide variations including a d33,eff sign change within a single device.
RESUMO
Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
RESUMO
Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.
RESUMO
Ferroelectric (FE) HfO2-based thin films, which are considered as one of the most promising material systems for memory device applications, exhibit an adverse tendency for strong imprint. Manifestation of imprint is a shift of the polarization-voltage (P-V) loops along the voltage axis due to the development of an internal electric bias, which can lead to the failure of the writing and retention functions. Here, to gain insight into the mechanism of the imprint effect in La-doped HfO2 (La:HfO2) capacitors, we combine the pulse switching technique with high-resolution domain imaging by means of piezoresponse force microscopy. This approach allows us to establish a correlation between the macroscopic switching characteristics and domain time-voltage-dependent behavior. It has been shown that the La:HfO2 capacitors exhibit a much more pronounced imprint compared to Pb(Zr,Ti)O3-based FE capacitors. Also, in addition to conventional imprint, which evolves with time in the poled capacitors, an easily changeable imprint, termed as "fluid imprint", with a strong dependence on the switching prehistory and measurement conditions, has been observed. Visualization of the domain structure reveals a specific signature of fluid imprint-continuous switching of polarization in the same direction as the previously applied field that continues a long time after the field was turned off. This effect, termed as "inertial switching", is attributed to charge injection and subsequent trapping at defect sites at the film-electrode interface.
RESUMO
Because of their full compatibility with the modern Si-based technology, the HfO2-based ferroelectric films have recently emerged as viable candidates for application in nonvolatile memory devices. However, despite significant efforts, the mechanism of the polarization switching in this material is still under debate. In this work, we elucidate the microscopic nature of the polarization switching process in functional Hf0.5Zr0.5O2-based ferroelectric capacitors during its operation. In particular, the static domain structure and its switching dynamics following the application of the external electric field have been monitored with the advanced piezoresponse force microscopy (PFM) technique providing a nm resolution. Separate domains with strong built-in electric field have been found. Piezoresponse mapping of pristine Hf0.5Zr0.5O2 films revealed the mixture of polar phase grains and regions with low piezoresponse as well as the continuum of polarization orientations in the grains of polar orthorhombic phase. PFM data combined with the structural analysis of pristine versus trained film by plan-view transmission electron microscopy both speak in support of a monoclinic-to-orthorhombic phase transition in ferroelectric Hf0.5Zr0.5O2 layer during the wake-up process under an electrical stress.
RESUMO
Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.