Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851295

RESUMO

OBJECTIVES: B-cell depletion time after rituximab (RTX) treatment is prolonged in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) compared with other autoimmune diseases. We investigated central and peripheral B-cell development to identify the causes for the defect in B-cell reconstitution after RTX therapy. METHODS: We recruited 91 patients with AAV and performed deep phenotyping of the peripheral and bone marrow B-cell compartment by spectral flow and mass cytometry. B-cell development was studied by in vitro modelling and the role of BAFF receptor by quantitative PCR, western blot analysis and in vitro assays. RESULTS: Treatment-naïve patients with AAV showed low transitional B-cell numbers, suggesting impaired B-lymphopoiesis. We analysed bone marrow of treatment-naïve and RTX-treated patients with AAV and found reduced B-lymphoid precursors. In vitro modelling of B-lymphopoiesis from AAV haematopoietic stem cells showed intact, but slower and reduced immature B-cell development. In a subgroup of patients, after RTX treatment, the presence of transitional B cells did not translate in replenishment of naïve B cells, suggesting an impairment in peripheral B-cell maturation. We found low BAFF-receptor expression on B cells of RTX-treated patients with AAV, resulting in reduced survival in response to BAFF in vitro. CONCLUSIONS: Prolonged depletion of B cells in patients with AAV after RTX therapy indicates a B-cell defect that is unmasked by RTX treatment. Our data indicate that impaired bone marrow B-lymphopoiesis results in a delayed recovery of peripheral B cells that may be further aggravated by a survival defect of B cells. Our findings contribute to the understanding of AAV pathogenesis and may have clinical implications regarding RTX retreatment schedules and immunomonitoring after RTX therapy.

2.
Cardiovasc Res ; 106(3): 488-97, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25852083

RESUMO

AIMS: Being central part of the DNA repair machinery, DNA-dependent protein kinase (DNA-PK) seems to be involved in other signalling processes, as well. NOR1 is a member of the NR4A subfamily of nuclear receptors, which plays a central role in vascular smooth muscle cell (SMC) proliferation and in vascular proliferative processes. We determined putative phosphorylation sites of NDA-PK in NOR1 and hypothesized that the enzyme is able to modulate NOR1 signalling and, this way, proliferation of SMC. METHODS AND RESULTS: Cultured human aortic SMC were treated with the specific DNA-PK inhibitor NU7026 (or siRNA), which resulted in a 70% inhibition of FCS-induced proliferation as measured by BrdU incorporation. Furthermore, FCS-stimulated up-regulation of NOR1 protein as well as the cell-cycle promoting proteins proliferating cell nuclear antigen (PCNA), cyclin D1, and hyperphosphorylation of the retinoblastoma protein were prevented by DNA-PK inhibition. Co-immunoprecipitation studies from VSM cell lysates demonstrated that DNA-PK forms a complex with NOR1. Mutational analysis and kinase assays demonstrated that NOR1 is a substrate of DNA-PK and is phosphorylated in the N-terminal domain. Phosphorylation resulted in post-transcriptional stabilization of the protein through prevention of its ubiquitination. Active DNA-PK and NOR1 were found predominantly expressed within the neointima of human atherosclerotic tissue specimens. In mice, inhibition of DNA-PK significantly attenuated neointimal lesion size 3 weeks after wire-injury. CONCLUSION: DNA-PK directly phosphorylates NOR-1 and, this way, modulates SMC proliferation. These data add to our understanding of vascular remodelling processes and opens new avenues for treatment of vascular proliferative diseases.


Assuntos
Aterosclerose/enzimologia , Proliferação de Células , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Nucleares/metabolismo , Remodelação Vascular , Animais , Aterosclerose/genética , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclina D1/metabolismo , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estabilidade Proteica , Proteólise , Interferência de RNA , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Ubiquitinação , Remodelação Vascular/efeitos dos fármacos , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/enzimologia , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA