Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139355

RESUMO

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Assuntos
COVID-19/imunologia , Caspase 8/metabolismo , Interferon gama/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Macrófagos/imunologia , Mitocôndrias/metabolismo , SARS-CoV-2/fisiologia , Animais , Caspase 8/genética , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Interferon gama/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
2.
Nature ; 605(7909): 349-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477763

RESUMO

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Animais , Autoimunidade/genética , Linfócitos B , GMP Cíclico/análogos & derivados , Guanosina , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
3.
EMBO J ; 42(6): e112558, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36762431

RESUMO

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Assuntos
Caspases , Inflamassomos , Camundongos , Humanos , Animais , Caspases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas de Transporte , Imunidade Inata
4.
Nucleic Acids Res ; 50(17): 10153-10168, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107767

RESUMO

Nucleases derived from the prokaryotic defense system CRISPR-Cas are frequently re-purposed for gene editing and molecular diagnostics. Hence, an in-depth understanding of the molecular mechanisms of these enzymes is of crucial importance. We focused on Cas12a from Francisella novicida (FnCas12a) and investigated the functional role of helix 1, a structural element that together with the bridge helix (BH) connects the recognition and the nuclease lobes of FnCas12a. Helix 1 is structurally connected to the lid domain that opens upon DNA target loading thereby activating the active site of FnCas12a. We probed the structural states of FnCas12a variants altered in helix 1 and/or the bridge helix using single-molecule FRET measurements and assayed the pre-crRNA processing, cis- and trans-DNA cleavage activity. We show that helix 1 and not the bridge helix is the predominant structural element that confers conformational stability of FnCas12a. Even small perturbations in helix 1 lead to a decrease in DNA cleavage activity while the structural integrity is not affected. Our data, therefore, implicate that the concerted remodeling of helix 1 and the bridge helix upon DNA binding is structurally linked to the opening of the lid and therefore involved in the allosteric activation of the active site.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , DNA/genética , Endonucleases/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos/genética
5.
Trends Genet ; 36(12): 905-914, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039248

RESUMO

Genome editing has powerful applications in research, healthcare, and agriculture. However, the range of possible molecular events resulting from genome editing has been underestimated and the technology remains unpredictable on, and away from, the target locus. This has considerable impact in providing a safe approach for therapeutic genome editing, agriculture, and other applications. This opinion article discusses how to anticipate and detect those editing events by a combination of assays to capture all possible genomic changes. It also discusses strategies for preventing unwanted effects, critical to appraise the benefit or risk associated with the use of the technology. Anticipating and verifying the result of genome editing are essential for the success for all applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/normas , Genoma , Animais , Humanos , Medição de Risco
6.
Brief Bioinform ; 22(1): 308-314, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32008042

RESUMO

The use of machine learning (ML) has become prevalent in the genome engineering space, with applications ranging from predicting target site efficiency to forecasting the outcome of repair events. However, jargon and ML-specific accuracy measures have made it hard to assess the validity of individual approaches, potentially leading to misinterpretation of ML results. This review aims to close the gap by discussing ML approaches and pitfalls in the context of CRISPR gene-editing applications. Specifically, we address common considerations, such as algorithm choice, as well as problems, such as overestimating accuracy and data interoperability, by providing tangible examples from the genome-engineering domain. Equipping researchers with the knowledge to effectively use ML to better design gene-editing experiments and predict experimental outcomes will help advance the field more rapidly.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Aprendizado de Máquina , Animais , Edição de Genes/normas , Genômica/métodos , Genômica/normas , Humanos
7.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203604

RESUMO

The recessive Ryanodine Receptor Type 1 (RyR1) P3527S mutation causes mild muscle weakness in patients and increased resting cytoplasmic [Ca2+] in transformed lymphoblastoid cells. In the present study, we explored the cellular/molecular effects of this mutation in a mouse model of the mutation (RyR1 P3528S). The results were obtained from 73 wild type (WT/WT), 82 heterozygous (WT/MUT) and 66 homozygous (MUT/MUT) mice with different numbers of observations in individual data sets depending on the experimental protocol. The results showed that WT/MUT and MUT/MUT mouse strength was less than that of WT/WT mice, but there was no difference between genotypes in appearance, weight, mobility or longevity. The force frequency response of extensor digitorum longus (EDL) and soleus (SOL) muscles from WT/MUT and MUT/MUT mice was shifter to higher frequencies. The specific force of EDL muscles was reduced and Ca2+ activation of skinned fibres shifted to a lower [Ca2+], with an increase in type I fibres in EDL muscles and in mixed type I/II fibres in SOL muscles. The relative activity of RyR1 channels exposed to 1 µM cytoplasmic Ca2+ was greater in WT/MUT and MUT/MUT mice than in WT/WT mice. We suggest the altered RyR1 activity due to the P2328S substitution could increase resting [Ca2+] in muscle fibres, leading to changes in fibre type and contractile properties.


Assuntos
Ativação do Canal Iônico , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Citoplasma , Contração Muscular , Fibras Musculares Esqueléticas , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
8.
Bioessays ; 42(9): e2000047, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643177

RESUMO

Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Genoma , Genômica , Humanos , RNA Guia de Cinetoplastídeos/genética
9.
PLoS Genet ; 15(3): e1007994, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870431

RESUMO

The simplicity and the versatility of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR-Cas) systems have enabled the genetic modification of virtually every organism and offer immense therapeutic potential for the treatment of human disease. Although these systems may function efficiently within eukaryotic cells, there remain concerns about the accuracy of Cas endonuclease effectors and their use for precise gene editing. Recently, two independent reports investigating the editing accuracy of the CRISPR-Cas9 system were published by separate groups at the Wellcome Sanger Institute; our study-Iyer and colleagues [1]-defined the landscape of off-target mutations, whereas the other by Kosicki and colleagues [2] detailed the existence of on-target, potentially deleterious deletions. Although both studies found evidence of large on-target CRISPR-induced deletions, they reached seemingly very different conclusions.


Assuntos
Sistemas CRISPR-Cas/genética , Divisão Celular/genética , Genoma/genética , Genômica , Animais , Ciclo Celular/genética , Edição de Genes/tendências , Terapia Genética/tendências , Genótipo , Humanos , Mamíferos , Taxa de Mutação , Deleção de Sequência/genética , Zigoto/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 116(40): 20135-20140, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527262

RESUMO

Staphylococcus aureus small-colony variants (SCVs) are associated with unusually chronic and persistent infections despite active antibiotic treatment. The molecular basis for this clinically important phenomenon is poorly understood, hampered by the instability of the SCV phenotype. Here we investigated the genetic basis for an unstable S. aureus SCV that arose spontaneously while studying rifampicin resistance. This SCV showed no nucleotide differences across its genome compared with a normal-colony variant (NCV) revertant, yet the SCV presented the hallmarks of S. aureus linked to persistent infection: down-regulation of virulence genes and reduced hemolysis and neutrophil chemotaxis, while exhibiting increased survival in blood and ability to invade host cells. Further genome analysis revealed chromosome structural variation uniquely associated with the SCV. These variations included an asymmetric inversion across half of the S. aureus chromosome via recombination between type I restriction modification system (T1RMS) genes, and the activation of a conserved prophage harboring the immune evasion cluster (IEC). Phenotypic reversion to the wild-type-like NCV state correlated with reversal of the chromosomal inversion (CI) and with prophage stabilization. Further analysis of 29 complete S. aureus genomes showed strong signatures of recombination between hsdMS genes, suggesting that analogous CI has repeatedly occurred during S. aureus evolution. Using qPCR and long-read amplicon deep sequencing, we detected subpopulations with T1RMS rearrangements causing CIs and prophage activation across major S. aureus lineages. Here, we have discovered a previously unrecognized and widespread mechanism of reversible genomic instability in S. aureus associated with SCV generation and persistent infections.


Assuntos
Instabilidade Cromossômica , Cromossomos Bacterianos , Fenótipo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Translocação Genética , Inversão Cromossômica , Ordem dos Genes , Genoma Bacteriano , Hemólise , Humanos , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia
11.
Eur J Immunol ; 49(5): 770-781, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30729501

RESUMO

Mutation of Dedicator of cytokinesis 8 (DOCK8) has previously been reported to provide resistance to the Th17 cell dependent EAE in mice. Contrary to expectation, we observed an elevation of Th17 cells in two different DOCK8 mutant mouse strains in the steady state. This was specific for Th17 cells with no change in Th1 or Th2 cell populations. In vitro Th cell differentiation assays revealed that the elevated Th17 cell population was not due to a T cell intrinsic differentiation bias. Challenging these mutant mice in the EAE model, we confirmed a resistance to this autoimmune disease with Th17 cells remaining elevated systemically while cellular infiltration in the CNS was reduced. Infiltrating T cells lost the bias toward Th17 cells indicating a relative reduction of Th17 cells in the CNS and a Th17 cell specific migration disadvantage. Adoptive transfers of Th1 and Th17 cells in EAE-affected mice further supported the Th17 cell-specific migration defect, however, DOCK8-deficient Th17 cells expressed normal Th17 cell-specific CCR6 levels and migrated toward chemokine gradients in transwell assays. This study shows that resistance to EAE in DOCK8 mutant mice is achieved despite a systemic Th17 bias.


Assuntos
Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/etiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Contagem de Linfócitos , Mutação , Células Th17/imunologia , Células Th17/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Expressão Gênica , Predisposição Genética para Doença , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
12.
BMC Genomics ; 20(Suppl 8): 546, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31307400

RESUMO

BACKGROUND: Short-read resequencing of genomes produces abundant information of the genetic variation of individuals. Due to their numerous nature, these variants are rarely exhaustively validated. Furthermore, low levels of undetected variant miscalling will have a systematic and disproportionate impact on the interpretation of individual genome sequence information, especially should these also be carried through into in reference databases of genomic variation. RESULTS: We find that sequence variation from short-read sequence data is subject to recurrent-yet-intermittent miscalling that occurs in a sequence intrinsic manner and is very sensitive to sequence read length. The miscalls arise from difficulties aligning short reads to redundant genomic regions, where the rate of sequencing error approaches the sequence diversity between redundant regions. We find the resultant miscalled variants to be sensitive to small sequence variations between genomes, and thereby are often intrinsic to an individual, pedigree, strain or human ethnic group. In human exome sequences, we identify 2-300 recurrent false positive variants per individual, almost all of which are present in public databases of human genomic variation. From the exomes of non-reference strains of inbred mice, we identify 3-5000 recurrent false positive variants per mouse - the number of which increasing with greater distance between an individual mouse strain and the reference C57BL6 mouse genome. We show that recurrently miscalled variants may be reproduced for a given genome from repeated simulation rounds of read resampling, realignment and recalling. As such, it is possible to identify more than two-thirds of false positive variation from only ten rounds of simulation. CONCLUSION: Identification and removal of recurrent false positive variants from specific individual variant sets will improve overall data quality. Variant miscalls arising are highly sequence intrinsic and are often specific to an individual, pedigree or ethnicity. Further, read length is a strong determinant of whether given false variants will be called for any given genome - which has profound significance for cohort studies that pool datasets collected and sequenced at different points in time.


Assuntos
Genômica/métodos , Mutação de Sentido Incorreto/genética , Análise de Sequência de DNA/métodos , Animais , Bases de Dados Genéticas , Etnicidade/genética , Reações Falso-Positivas , Humanos , Camundongos , Projetos de Pesquisa
13.
Mamm Genome ; 29(7-8): 507-522, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29594458

RESUMO

Malaria remains a deadly parasitic disease caused by Plasmodium, claiming almost half a million lives every year. While parasite genetics and biology are often the major targets in many studies, it is becoming more evident that host genetics plays a crucial role in the outcome of the infection. Similarly, Plasmodium infections in mice also rely heavily on the genetic background of the mice, and often correlate with observations in human studies, due to their high genetic homology with humans. As such, murine models of malaria are a useful tool for understanding host responses during Plasmodium infections, as well as dissecting host-parasite interactions through various genetic manipulation techniques. Reverse genetic approach such as quantitative trait loci studies and random mutagenesis screens have been employed to discover novel host genes that affect malaria susceptibility in mouse models, while other targeted studies utilize mouse models to validate observation from human studies. Herein, we review the findings from the past and present studies on murine models of hepatic and erythrocytic stages of malaria and speculate on how the current mouse models benefit from the recent development in CRISPR/Cas9 gene editing technology.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Interações Hospedeiro-Parasita/genética , Malária/genética , Malária/parasitologia , Plasmodium/fisiologia , Animais , Modelos Animais de Doenças , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Marcação de Genes , Ligação Genética , Estudo de Associação Genômica Ampla , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Estágios do Ciclo de Vida , Camundongos , Mutagênese , Locos de Características Quantitativas
14.
Blood ; 128(9): 1290-301, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465915

RESUMO

The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection.


Assuntos
AMP Desaminase , Eritrócitos/imunologia , Imunidade Inata , Malária , Mutação , Plasmodium chabaudi/imunologia , AMP Desaminase/genética , AMP Desaminase/imunologia , Animais , Senescência Celular/genética , Senescência Celular/imunologia , Eritrócitos/parasitologia , Eritropoese/genética , Eritropoese/imunologia , Etilnitrosoureia/toxicidade , Meia-Vida , Malária/genética , Malária/imunologia , Masculino , Camundongos
15.
PLoS Biol ; 13(4): e1002132, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25901609

RESUMO

Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.


Assuntos
Artemisininas/farmacologia , Plasmodium falciparum/fisiologia , Estresse Fisiológico , Animais , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Genoma de Protozoário , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética
16.
J Law Med ; 26(1): 208-213, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30302983

RESUMO

Recent technological breakthroughs in ribonucleic acid (RNA) research and the creation of synthetic gene drives using CRISPR/Cas9 have increased attention on the ethical and legal regulation of this field. RNA is now perceived as not merely a passive carrier of DNA information but especially through its propensity to mutate as a computation engine of cell biology, developmental biology and evolution. Synthetic Gene drives have been hailed as a potential strategy to reduce climate-change-mediated biosecurity threats such as spreading malaria and have attracted significant investment, with the Gates Foundation pledging US$75 million and the Defense Advanced Research Projects Agency awarding US$65 million. Calls for a global moratorium on RNA-mediated genetic engineering may overstate the potential risks of the developing technology, but form a background to the contest between "process"- and "product" -based approaches to regulation, the former purportedly favoured by the public and regulatory agencies and the latter favoured by the broad scientific community and corporate investors. At stake may be the democratic legitimacy of and equitable access to a technology that could be important to reduce the incidence of biosecurity threats both globally and in Australia.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Tecnologia de Impulso Genético , RNA
17.
Blood ; 125(3): 534-41, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414439

RESUMO

Many red cell polymorphisms are a result of selective pressure by the malarial parasite. Here, we add another red cell disease to the panoply of erythrocytic changes that give rise to resistance to malaria. Erythrocytes from individuals with erythropoietic protoporphyria (EPP) have low levels of the final enzyme in the heme biosynthetic pathway, ferrochelatase. Cells from these patients are resistant to the growth of Plasmodium falciparum malarial parasites. This phenomenon is due to the absence of ferrochelatase and not an accumulation of substrate, as demonstrated by the normal growth of P falciparum parasites in the EPP phenocopy, X-linked dominant protoporphyria, which has elevated substrate, and normal ferrochelatase levels. This observation was replicated in a mouse strain with a hypomorphic mutation in the murine ferrochelatase gene. The parasite enzyme is not essential for parasite growth as Plasmodium berghei parasites carrying a complete deletion of the ferrochelatase gene grow normally in erythrocytes, which confirms previous studies. That ferrochelatase is essential to parasite growth was confirmed by showing that inhibition of ferrochelatase using the specific competitive inhibitor, N-methylprotoporphyrin, produced a potent growth inhibition effect against cultures of P falciparum. This raises the possibility of targeting human ferrochelatase in a host-directed antimalarial strategy.


Assuntos
Eritrócitos/parasitologia , Ferroquelatase/fisiologia , Malária Falciparum/prevenção & controle , Plasmodium berghei/crescimento & desenvolvimento , Protoporfiria Eritropoética/prevenção & controle , Animais , Eritrócitos/enzimologia , Feminino , Ferroquelatase/antagonistas & inibidores , Heme/metabolismo , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Protoporfiria Eritropoética/enzimologia , Protoporfiria Eritropoética/parasitologia , Protoporfirinas/farmacologia
18.
Infect Immun ; 83(11): 4322-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303393

RESUMO

The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, Tfrc(MRI24910), identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria.


Assuntos
Eritrócitos/metabolismo , Deficiências de Ferro , Malária/parasitologia , Mutação de Sentido Incorreto , Plasmodium chabaudi/fisiologia , Receptores da Transferrina/genética , Animais , Suscetibilidade a Doenças , Feminino , Humanos , Malária/sangue , Masculino , Camundongos , Receptores da Transferrina/metabolismo
20.
BMC Genomics ; 16: 866, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26503232

RESUMO

BACKGROUND: N-ethyl-N-nitrosourea (ENU) mutagen has become the method of choice for inducing random mutations for forward genetics applications. However, distinguishing induced mutations from sequencing errors or sporadic mutations is difficult, which has hampered surveys of potential biases in the methodology in the past. Addressing this issue, we created a large cohort of mice with biological replicates enabling the confident calling of induced mutations, which in turn allowed us to conduct a comprehensive analysis of potential biases in mutation properties and genomic location. RESULTS: In the exome sequencing data we observe the known preference of ENU to cause A:T=>G:C transitions in longer genes. Mutations were frequently clustered and inherited in blocks hampering attempts to pinpoint individual causative mutations by genome analysis only. Furthermore, ENU mutations were biased towards areas in the genome that are accessible in testis, potentially limiting the scope of forward genetic approaches to only 1-10% of the genome. CONCLUSION: ENU provides a powerful tool for exploring the genome-phenome relationship, however forward genetic applications that require the mutation to be passed on through the germ line may be limited to explore only genes that are accessible in testis.


Assuntos
Etilnitrosoureia/toxicidade , Mutagênicos/toxicidade , Mutação/genética , Animais , Exoma/efeitos dos fármacos , Exoma/genética , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Testículo/efeitos dos fármacos , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA