Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38793703

RESUMO

BCG vaccination affects other diseases beyond tuberculosis by unknown-potentially immunomodulatory-mechanisms. Recent studies have shown that BCG vaccination administered during overt type 1 diabetes (T1D) improved glycemic control and affected immune and metabolic parameters. Here, we comprehensively characterized Ghanaian T1D patients with or without routine neonatal BCG vaccination to identify vaccine-associated alterations. Ghanaian long-term T1D patients (n = 108) and matched healthy controls (n = 214) were evaluated for disease-related clinical, metabolic, and immunophenotypic parameters and compared based on their neonatal BCG vaccination status. The majority of study participants were BCG-vaccinated at birth and no differences in vaccination rates were detected between the study groups. Notably, glycemic control metrics, i.e., HbA1c and IDAA1c, showed significantly lower levels in BCG-vaccinated as compared to unvaccinated patients. Immunophenotype comparisons identified higher expression of the T cell activation marker CD25 on CD8+ T cells from BCG-vaccinated T1D patients. Correlation analysis identified a negative correlation between HbA1c levels and CD25 expression on CD8+ T cells. In addition, we observed fractional increases in glycolysis metabolites (phosphoenolpyruvate and 2/3-phosphoglycerate) in BCG-vaccinated T1D patients. These results suggest that neonatal BCG vaccination is associated with better glycemic control and increased activation of CD8+ T cells in T1D patients.

2.
Lancet Diabetes Endocrinol ; 12(2): 119-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142707

RESUMO

BACKGROUND: Heterogeneity in type 2 diabetes can be represented by a tree-like graph structure by use of reversed graph-embedded dimensionality reduction. We aimed to examine whether this approach can be used to stratify key pathophysiological components and diabetes-related complications during longitudinal follow-up of individuals with recent-onset type 2 diabetes. METHODS: For this cohort analysis, 927 participants aged 18-69 years from the German Diabetes Study (GDS) with recent-onset type 2 diabetes were mapped onto a previously developed two-dimensional tree based on nine simple clinical and laboratory variables, residualised for age and sex. Insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, insulin secretion was assessed by intravenous glucose tolerance test, hepatic lipid content was assessed by 1 H magnetic resonance spectroscopy, serum interleukin (IL)-6 and IL-18 were assessed by ELISA, and peripheral and autonomic neuropathy were assessed by functional and clinical measures. Participants were followed up for up to 16 years. We also investigated heart failure and all-cause mortality in 794 individuals with type 2 diabetes undergoing invasive coronary diagnostics from the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort. FINDINGS: There were gradients of clamp-measured insulin sensitivity (both dimensions: p<0·0001) and insulin secretion (pdim1<0·0001, pdim2=0·00097) across the tree. Individuals in the region with the lowest insulin sensitivity had the highest hepatic lipid content (n=205, pdim1<0·0001, pdim2=0·037), pro-inflammatory biomarkers (IL-6: n=348, pdim1<0·0001, pdim2=0·013; IL-18: n=350, pdim1<0·0001, pdim2=0·38), and elevated cardiovascular risk (nevents=143, pdim1=0·14, pdim2<0·00081), whereas individuals positioned in the branch with the lowest insulin secretion were more prone to require insulin therapy (nevents=85, pdim1=0·032, pdim2=0·12) and had the highest risk of diabetic sensorimotor polyneuropathy (nevents=184, pdim1=0·012, pdim2=0·044) and cardiac autonomic neuropathy (nevents=118, pdim1=0·0094, pdim2=0·06). In the LURIC cohort, all-cause mortality was highest in the tree branch showing insulin resistance (nevents=488, pdim1=0·12, pdim2=0·0032). Significant gradients differentiated individuals having heart failure with preserved ejection fraction from those who had heart failure with reduced ejection fraction. INTERPRETATION: These data define the pathophysiological underpinnings of the tree structure, which has the potential to stratify diabetes-related complications on the basis of routinely available variables and thereby expand the toolbox of precision diabetes diagnosis. FUNDING: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, European Community, German Research Foundation, and Schmutzler Stiftung.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Resistência à Insulina , Humanos , Interleucina-18 , Estudos Prospectivos , Insulina/uso terapêutico , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA