RESUMO
Epithelial growth factor-like 7 (EGFL7) is a protein that is secreted by endothelial cells and plays an important role in angiogenesis. Although EGFL7 is aberrantly overexpressed in solid tumors, its role in leukemia has not been evaluated. Here, we report that levels of both EGFL7 mRNA and EGFL7 protein are increased in blasts of patients with acute myeloid leukemia (AML) compared with normal bone marrow cells. High EGFL7 mRNA expression associates with lower complete remission rates, and shorter event-free and overall survival in older (age ≥60 y) and younger (age <60 y) patients with cytogenetically normal AML. We further show that AML blasts secrete EGFL7 protein and that higher levels of EGFL7 protein are found in the sera from AML patients than in sera from healthy controls. Treatment of patient AML blasts with recombinant EGFL7 in vitro leads to increases in leukemic blast cell growth and levels of phosphorylated AKT. EGFL7 blockade with an anti-EGFL7 antibody reduced the growth potential and viability of AML cells. Our findings demonstrate that increased EGFL7 expression and secretion is an autocrine mechanism supporting growth of leukemic blasts in patients with AML.
Assuntos
Fatores de Crescimento Endotelial/genética , Fatores de Crescimento Endotelial/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Proteínas Angiogênicas/antagonistas & inibidores , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Família de Proteínas EGF , Fatores de Crescimento Endotelial/antagonistas & inibidores , Feminino , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Prognóstico , Proteínas/metabolismo , Proteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fatores de Risco , Regulação para Cima , Adulto JovemRESUMO
Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.
Assuntos
Transtornos da Insuficiência da Medula Óssea/etiologia , Medula Óssea/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Benzilaminas , Medula Óssea/patologia , Células da Medula Óssea , Transtornos da Insuficiência da Medula Óssea/patologia , Proliferação de Células , Quimiocina CXCL12 , Ciclamos , Modelos Animais de Doenças , Feminino , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais , Traumatismos da Medula Espinal/imunologiaRESUMO
PURPOSE: EGF-like domain 7 (EGFL7) is a secreted protein and recently has been shown to play an important role in acute myeloid leukemia (AML); however, the underlying mechanism by which EGFL7 promotes leukemogenesis is largely unknown. EXPERIMENTAL DESIGN: Using an antibody interaction array, we measured the ability of EGFL7 to bind directly approximately 400 proteins expressed by primary AML blasts. Primary patient samples were stimulated in vitro with recombinant EGFL7 (rEGFL7) or anti-EGFL7 blocking antibody to assess alterations in downstream signaling and the ability to effect blast differentiation and survival. We treated three independent AML models with anti-EGFL7 or IgG1 control to determine whether anti-EGFL7 could prolong survival in vivo. RESULTS: We found EGFL7 significantly binds several signaling proteins important for normal and malignant hematopoiesis including NOTCH. Stimulation of AML blasts with rEGFL7 reduced NOTCH intracellular domain and NOTCH target gene expression while treatment with an anti-EGFL7 blocking antibody resulted in reactivation of NOTCH signaling, increased differentiation, and apoptosis. Competitive ligand-binding assays showed rEGFL7 inhibits DELTA-like (DLL) 4-mediated NOTCH activation while anti-EGFL7 combined with DLL4 significantly increased NOTCH activation and induced apoptosis. Using three different AML mouse models, we demonstrated that in vivo treatment with anti-EGFL7 alone results in increased survival. CONCLUSIONS: Our data demonstrate that EGFL7 contributes to NOTCH silencing in AML by antagonizing canonical NOTCH ligand binding. Reactivation of NOTCH signaling in vivo using anti-EGFL7 results in prolonged survival of leukemic mice, supporting the use of EGFL7 as a novel therapeutic target in AML.