Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900833

RESUMO

Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo. We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo. In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms.


Assuntos
Adenovírus Humanos , Tropismo Viral , alfa-Defensinas , alfa-Defensinas/metabolismo , Humanos , Adenovírus Humanos/fisiologia , Adenovírus Humanos/metabolismo , Animais , Camundongos , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Receptores Virais/metabolismo , Internalização do Vírus
2.
J Biol Chem ; 298(9): 102277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863436

RESUMO

La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5'TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.


Assuntos
Aminoácidos , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases , Sequência de Oligopirimidina na Região 5' Terminal do RNA , RNA Mensageiro , Proteínas de Ligação a RNA , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Animais , Técnicas de Cultura de Células , Imunoprecipitação da Cromatina , Fator de Iniciação 4E em Eucariotos/metabolismo , Fibroblastos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854108

RESUMO

Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo . We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo . In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms. Author Summary: In this study, we demonstrate a novel mechanism for binding of human adenoviruses (HAdVs) to cells that is dependent upon interactions with α-defensin host defense peptides but is independent of known viral receptors and co-receptors. To block normal receptor-mediated HAdV infection, we made genetic changes to both host cells and HAdVs. Under these conditions, α-defensins restored cell binding; however, infection still required the function of HAdV integrin co-receptors. This was true for multiple types of HAdVs that use different primary receptors and for cells that are either naturally devoid of HAdV receptors or were engineered to be receptor deficient. These observations suggest that in the presence of concentrations of α-defensins that would be found naturally in the lung or intestine, there are two parallel pathways for HAdV binding to cells that converge on integrins for productive infection. Moreover, these binding pathways function independently, and both operate in mixed culture. Thus, we have found that viruses can co-opt host defense molecules to expand their tropism.

4.
Phys Rev E ; 107(3-1): 034125, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072955

RESUMO

We investigate how the temperature calculated from the microcanonical entropy compares with the canonical temperature for finite isolated quantum systems. We concentrate on systems with sizes that make them accessible to numerical exact diagonalization. We thus characterize the deviations from ensemble equivalence at finite sizes. We describe multiple ways to compute the microcanonical entropy and present numerical results for the entropy and temperature computed in these various ways. We show that using an energy window whose width has a particular energy dependence results in a temperature with minimal deviations from the canonical temperature.

5.
Phys Rev E ; 107(2-1): 024102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932575

RESUMO

In the study of thermalization in finite isolated quantum systems, an inescapable issue is the definition of temperature. We examine and compare different possible ways of assigning temperatures to energies or equivalently to eigenstates in such systems. A commonly used assignment of temperature in the context of thermalization is based on the canonical energy-temperature relationship, which depends only on energy eigenvalues and not on the structure of eigenstates. For eigenstates, we consider defining temperature by minimizing the distance between (full or reduced) eigenstate density matrices and canonical density matrices. We show that for full eigenstates, the minimizing temperature depends on the distance measure chosen and matches the canonical temperature for the trace distance; however, the two matrices are not close. With reduced density matrices, the minimizing temperature has fluctuations that scale with subsystem and system size but appears to be independent of distance measure. In particular limits, the two matrices become equivalent while the temperature tends to the canonical temperature.

6.
Nat Commun ; 13(1): 6829, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369503

RESUMO

Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended ß strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , Humanos , RNA Mensageiro/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Aminoácidos/metabolismo , Dipeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA