Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 21(4): 1463-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25145694

RESUMO

Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat-forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia--a relatively pristine subtropical embayment whose dominant, canopy-forming seagrass, Amphibolis antarctica, is a temperate species growing near its low-latitude range limit--as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal-borne video footage taken from the perspective of resident, seagrass-associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long-term, community-level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal-borne video and data-logging systems, can make an important contribution to this framework.


Assuntos
Alismatales/fisiologia , Mudança Climática , Ecossistema , Tartarugas/fisiologia , Alismatales/crescimento & desenvolvimento , Animais , Amiantos Anfibólicos , Temperatura Alta , Especificidade da Espécie , Gravação em Vídeo , Austrália Ocidental
2.
J Anim Ecol ; 82(6): 1192-202, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23730871

RESUMO

1. The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in ecosystems around the world, but there remain important questions regarding the contexts in which such changes are most likely and the mechanisms through which they occur, particularly in marine ecosystems. 2. We used long-term exclusion cages to examine the effects of large grazers (sea cows, Dugong dugon; sea turtles Chelonia mydas) on seagrass community structure, biomass and nutrient dynamics. Experiments were conducted in habitats with high risk of predation (interior of shallow banks) and lower risk (edges of banks) to elucidate whether nonconsumptive (risk) effects of tiger sharks (Galeocerdo cuvier), a roving predator, structure herbivore impacts on seagrasses. 3. In lower-risk habitats, excluding large herbivores resulted in increased leaf length for Cymodocea angustata and Halodule uninervis. C. angustata shoot densities nearly tripled when released from herbivory, while H. uninervis nearly disappeared from exclusion cages over the course of the study. 4. We found no support for the hypothesis that grazing increases seagrass nutrient content. Instead, phosphorus content was higher in seagrasses within exclosures. This pattern is consistent with decreased light availability in the denser C. angustata canopies that formed in exclosures, and may indicate that competition for light led to the decrease in H. uninervis. 5. Impacts of large grazers were consistent with a behaviour-mediated trophic cascade (BMTC) initiated by tiger sharks and mediated by risk-sensitive foraging by large grazers. 6, Our results suggest that large-bodied grazers likely played important roles in seagrass ecosystem dynamics historically and that roving predators are capable of initiating a BMTC. Conservation efforts in coastal ecosystems must account for such interactions or risk unintended consequences.


Assuntos
Comportamento Animal/fisiologia , Biota , Ecossistema , Comportamento Alimentar , Cadeia Alimentar , Animais , Biomassa , Dugong/fisiologia , Poaceae/fisiologia , Comportamento Predatório , Tubarões/fisiologia , Tartarugas/fisiologia , Austrália Ocidental
3.
Microbiologyopen ; 12(3): e1363, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379420

RESUMO

Sea turtle hatching success can be affected by many variables, including pathogenic microbes, but it is unclear which microbes are most impactful and how they are transmitted into the eggs. This study characterized and compared the bacterial communities from the (i) cloaca of nesting sea turtles (ii) sand within and surrounding the nests; and (iii) hatched and unhatched eggshells from loggerhead (Caretta caretta) and green (Chelonia mydas) turtles. High throughput sequencing of bacterial 16S ribosomal RNA gene V4 region amplicons was performed on samples collected from 27 total nests in Fort Lauderdale and Hillsboro beaches in southeast Florida, United States. Significant differences were identified between hatched and unhatched egg microbiota with the differences caused predominately by Pseudomonas spp., found in higher abundances in unhatched eggs (19.29% relative abundance) than hatched eggs (1.10% relative abundance). Microbiota similarities indicate that the nest sand environment, particularly nest distance from dunes, played a larger role than the nesting mother's cloaca in influencing hatched and unhatched egg microbiota. Pathogenic bacteria potentially derive from mixed-mode transmission or additional sources not included in this study as suggested by the high proportion (24%-48%) of unhatched egg microbiota derived from unknown sources. Nonetheless, the results suggest Pseudomonas as a candidate pathogen or opportunistic colonizer associated with sea turtle egg-hatching failure.


Assuntos
Microbiota , Tartarugas , Animais , Areia , Comportamento de Nidação , Microbiota/genética , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA