Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1011652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768256

RESUMO

The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.


Assuntos
Microscopia Crioeletrônica , DNA Polimerase Dirigida por DNA , Vaccinia virus , Vaccinia virus/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Animais , Humanos , Modelos Moleculares , Conformação Proteica , Cristalografia por Raios X
2.
Virologie (Montrouge) ; 28(1): 23-35, 2024 02 01.
Artigo em Francês | MEDLINE | ID: mdl-38450665

RESUMO

In the spring of 2022, an epidemic due to human monkeypox virus (MPXV) of unprecedented magnitude spread across all continents. Although this event was surprising in its suddenness, the resurgence of a virus from the Poxviridae family is not surprising in a world population that has been largely naïve to these viruses since the eradication of the smallpox virus in 1980 and the concomitant cessation of vaccination. Since then, a vaccine and two antiviral compounds have been developed to combat a possible return of smallpox. However, the use of these treatments during the 2022 MPXV epidemic showed certain limitations, indicating the importance of continuing to develop the therapeutic arsenal against these viruses. For several decades, efforts to understand the molecular mechanisms involved in the synthesis of the DNA genome of these viruses have been ongoing. Although many questions remain unanswered up to now, the three-dimensional structures of essential proteins, and in particular of the DNA polymerase holoenzyme in complex with DNA, make it possible to consider the development of a model for poxvirus DNA replication. In addition, these structures are valuable tools for the development of new antivirals targeting viral genome synthesis. This review will first present the molecules approved for the treatment of poxvirus infections, followed by a review of our knowledge of the replication machinery of these viruses. Finally, we will describe how these proteins could be the target of new antiviral compounds.


Assuntos
Mpox , Poxviridae , Vírus da Varíola , Humanos , Poxviridae/genética , Vírus da Varíola/genética , DNA , Replicação do DNA , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
J Virol ; 90(9): 4604-4613, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912611

RESUMO

UNLABELLED: Poxviridae are viruses with a large linear double-stranded DNA genome coding for up to 250 open reading frames and a fully cytoplasmic replication. The double-stranded DNA genome is covalently circularized at both ends. Similar structures of covalently linked extremities of the linear DNA genome are found in the African swine fever virus (asfarvirus) and in the Phycodnaviridae We are studying the machinery which replicates this peculiar genome structure. From our work with vaccinia virus, we give first insights into the overall structure and function of the essential poxvirus virus helicase-primase D5 and show that the active helicase domain of D5 builds a hexameric ring structure. This hexamer has ATPase and, more generally, nucleoside triphosphatase activities that are indistinguishable from the activities of full-length D5 and that are independent of the nature of the base. In addition, hexameric helicase domains bind tightly to single- and double-stranded DNA. Still, the monomeric D5 helicase construct truncated within the D5N domain leads to a well-defined structure, but it does not have ATPase or DNA-binding activity. This shows that the full D5N domain has to be present for hexamerization. This allowed us to assign a function to the D5N domain which is present not only in D5 but also in other viruses of the nucleocytoplasmic large DNA virus (NCLDV) clade. The primase domain and the helicase domain were structurally analyzed via a combination of small-angle X-ray scattering and, when appropriate, electron microscopy, leading to consistent low-resolution models of the different proteins. IMPORTANCE: Since the beginning of the 1980s, research on the vaccinia virus replication mechanism has basically stalled due to the absence of structural information. As a result, this important class of pathogens is less well understood than most other viruses. This lack of information concerns in general viruses of the NCLDV clade, which use a superfamily 3 helicase for replication, as do poxviruses. Here we provide for the first time information about the domain structure and DNA-binding activity of D5, the poxvirus helicase-primase. This result not only refines the current model of the poxvirus replication fork but also will lead in the long run to a structural basis for antiviral drug design.


Assuntos
DNA Helicases/química , DNA Primase/química , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Vaccinia virus , Proteínas Virais/química , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA Primase/metabolismo , DNA Viral/metabolismo , Ativação Enzimática , Cinética , Microscopia Eletrônica , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão , Proteínas Virais/metabolismo
4.
J Biol Chem ; 290(29): 17923-17934, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26045555

RESUMO

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 µm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.


Assuntos
DNA/metabolismo , Uracila-DNA Glicosidase/química , Vaccinia virus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/química , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Alinhamento de Sequência , Uracila-DNA Glicosidase/metabolismo , Vacínia/virologia , Vaccinia virus/química , Vaccinia virus/metabolismo
5.
PLoS Pathog ; 10(3): e1003978, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603707

RESUMO

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201₋50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201₋50 clearly behaves as a heterodimer. The crystal structure of D4/A201₋50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201₋50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201₋50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201₋50 interaction. Finally, we propose a model of D4/A201₋50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.


Assuntos
DNA Polimerase Dirigida por DNA/química , Vaccinia virus/química , Vaccinia virus/enzimologia , Animais , Cromatografia em Gel , Cristalografia , DNA Polimerase Dirigida por DNA/ultraestrutura , Escherichia coli , Holoenzimas/química , Holoenzimas/ultraestrutura , Simulação de Acoplamento Molecular , Subunidades Proteicas/química , Vaccinia virus/ultraestrutura
6.
Virus Genes ; 51(2): 171-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26292944

RESUMO

The helicase-primase complex is part of the lytic DNA replication machinery of herpesviruses, but up to now, almost nothing is known about its structure. For Epstein-Barr virus it consists in the helicase BBLF4, the primase BSLF1 and the accessory protein BBLF2/3. The accessory protein shows only weak sequence homology within the herpesvirus family but may be related to an inactive B-family polymerase. BSLF1 belongs to the archaeo-eukaryotic primase family, whereas the helicase BBLF4 has been related either to Dda helicases of caudovirales or to Pif1 helicases. We produced the helicase-primase complex in insect cells using a baculovirus coding for all three proteins simultaneously. The soluble monomeric helicase-primase complex containing the three proteins with 1:1:1 stoichiometry showed ATPase activity, which is strongly stimulated in the presence of ssDNA oligomers. Furthermore, we expressed BBLF2/3 as soluble monomeric protein and performed small-angle X-ray scattering experiments which yielded an envelope whose shape is compatible with B-family polymerases.


Assuntos
Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Baculoviridae/genética , Linhagem Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Vetores Genéticos , Insetos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Proteínas Virais/química
7.
J Antimicrob Chemother ; 69(1): 101-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23963236

RESUMO

OBJECTIVES: Francisella tularensis, a CDC class A potential bioterrorism agent, is a Gram-negative bacterium responsible for tularaemia. Understanding the mechanisms of resistance to antibiotics used as first-line treatment is of major security relevance. METHODS: We propagated the three parental reference strains Francisella tularensis subsp. holarctica live vaccine strain, Francisella novicida and Francisella philomiragia with increasing concentrations of ciprofloxacin, a fluoroquinolone used as curative and prophylactic treatment for tularaemia. This evolution procedure provided us with high-level ciprofloxacin-resistant mutants and all evolutionary intermediates towards high-level resistance. We determined the resistance levels to other fluoroquinolones (levofloxacin and moxifloxacin) and other antibiotic families (aminoglycosides, tetracyclines and macrolides) and characterized the genetic changes in the fluoroquinolone target genes encoding DNA gyrase and topoisomerase IV. RESULTS: All high-level resistant mutants shared cross-resistance to the tested fluoroquinolones, while some also revealed striking levels of cross-resistance to other clinically relevant antibiotic classes. High-level resistant mutants carried one to three mutations, including some not previously reported. We mapped all mutations onto known topoisomerase three-dimensional structures. Along the pathways towards high-level resistance, we identified complex evolutionary trajectories including polymorphic states and additional resistance mechanisms likely to be associated with efflux processes. CONCLUSIONS: Our data demonstrated the efficiency and speed of in vitro production of mutants highly resistant to fluoroquinolones in Francisella species. They emphasize the urgent need to identify all antibiotic resistance mechanisms in these species, develop molecular tools for their detection and design new therapeutic alternatives for tularaemia.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Francisella/efeitos dos fármacos , DNA Girase/genética , Análise Mutacional de DNA , DNA Topoisomerase IV/genética , Francisella/enzimologia , Francisella/genética , Francisella/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Seleção Genética , Inoculações Seriadas
8.
J Virol ; 87(3): 1679-89, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175373

RESUMO

Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages.


Assuntos
Replicação do DNA , Substâncias Macromoleculares/ultraestrutura , Vaccinia virus/fisiologia , Vaccinia virus/ultraestrutura , Replicação Viral , Microscopia Eletrônica , Mapeamento de Interação de Proteínas , Espalhamento a Baixo Ângulo , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
9.
J Virol ; 86(17): 9175-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696660

RESUMO

Replication of the human herpesvirus Epstein-Barr virus drastically impairs cellular protein synthesis. This shutoff phenotype results from mRNA degradation upon expression of the early lytic-phase protein BGLF5. Interestingly, BGLF5 is the viral DNase, or alkaline exonuclease, homologues of which are present throughout the herpesvirus family. During productive infection, this DNase is essential for processing and packaging of the viral genome. In contrast to this widely conserved DNase activity, shutoff is only mediated by the alkaline exonucleases of the subfamily of gammaherpesviruses. Here, we show that BGLF5 can degrade mRNAs of both cellular and viral origin, irrespective of polyadenylation. Furthermore, shutoff by BGLF5 induces nuclear relocalization of the cytosolic poly(A) binding protein. Guided by the recently resolved BGLF5 structure, mutants were generated and analyzed for functional consequences on DNase and shutoff activities. On the one hand, a point mutation destroying DNase activity also blocks RNase function, implying that both activities share a catalytic site. On the other hand, other mutations are more selective, having a more pronounced effect on either DNA degradation or shutoff. The latter results are indicative of an oligonucleotide-binding site that is partially shared by DNA and RNA. For this, the flexible "bridge" that crosses the active-site canyon of BGLF5 appears to contribute to the interaction with RNA substrates. These findings extend our understanding of the molecular basis for the shutoff function of BGLF5 that is conserved in gammaherpesviruses but not in alpha- and betaherpesviruses.


Assuntos
Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Desoxirribonucleases/genética , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Humanos , Dados de Sequência Molecular , Biossíntese de Proteínas , Estabilidade de RNA , Alinhamento de Sequência , Proteínas Virais/genética , Replicação Viral
10.
J Immunol ; 186(3): 1694-702, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21191071

RESUMO

Viruses use a wide range of strategies to modulate the host immune response. The human gammaherpesvirus EBV, causative agent of infectious mononucleosis and several malignant tumors, encodes proteins that subvert immune responses, notably those mediated by T cells. Less is known about EBV interference with innate immunity, more specifically at the level of TLR-mediated pathogen recognition. The viral dsDNA sensor TLR9 is expressed on B cells, a natural target of EBV infection. Here, we show that EBV particles trigger innate immune signaling pathways through TLR9. Furthermore, using an in vitro system for productive EBV infection, it has now been possible to compare the expression of TLRs by EBV(-) and EBV(+) human B cells during the latent and lytic phases of infection. Several TLRs were found to be differentially expressed either in latently EBV-infected cells or after induction of the lytic cycle. In particular, TLR9 expression was profoundly decreased at both the RNA and protein levels during productive EBV infection. We identified the EBV lytic-phase protein BGLF5 as a protein that contributes to downregulating TLR9 levels through RNA degradation. Reducing the levels of a pattern-recognition receptor capable of sensing the presence of EBV provides a mechanism by which the virus could obstruct host innate antiviral responses.


Assuntos
Desoxirribonucleases/fisiologia , Regulação para Baixo/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/biossíntese , Proteínas Virais/fisiologia , Latência Viral/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Subpopulações de Linfócitos B/virologia , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo/genética , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica/imunologia , Células HEK293 , Herpesvirus Humano 4/patogenicidade , Humanos , RNA Viral/antagonistas & inibidores , RNA Viral/metabolismo , Receptor Toll-Like 9/genética , Vírion/imunologia , Ativação Viral/imunologia
11.
Exp Cell Res ; 318(5): 509-20, 2012 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-22245583

RESUMO

We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Células HT29 , Humanos , Proteínas de Membrana/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA , Receptores de Quinase C Ativada , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Junções Íntimas/metabolismo , Fatores de Transcrição/química , Proteína da Zônula de Oclusão-1
12.
Proc Natl Acad Sci U S A ; 107(52): 22499-504, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21148420

RESUMO

The MoxR family of AAA+ ATPases is widespread throughout bacteria and archaea but remains poorly characterized. We recently found that the Escherichia coli MoxR protein, RavA (Regulatory ATPase variant A), tightly interacts with the inducible lysine decarboxylase, LdcI/CadA, to form a unique cage-like structure. Here, we present the X-ray structure of RavA and show that the αßα and all-α subdomains in the RavA AAA+ module are arranged as in magnesium chelatases rather than as in classical AAA+ proteins. RavA structure also contains a discontinuous triple-helical domain as well as a ß-barrel-like domain forming a unique fold, which we termed the LARA domain. The LARA domain was found to mediate the interaction between RavA and LdcI. The RavA structure provides insights into how five RavA hexamers interact with two LdcI decamers to form the RavA-LdcI cage-like structure.


Assuntos
Adenosina Trifosfatases/química , Carboxiliases/química , Proteínas de Escherichia coli/química , Estrutura Terciária de Proteína , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Calorimetria , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
13.
Virologie (Montrouge) ; 16(4): 185-198, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065880

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human pathogen which establishes life-long persistent infection in the large majority of the human population. During viral latency, the cellular machinery takes care of the replication of the viral episome. But EBV, as well as herpesviruses in general, codes for numerous enzymes required for lytic DNA replication which allow viral replication in resting cells. Recently, several tridimensional structures of these enzymes became available for EBV as well as for other herpesviruses so that structural information now exists for most of them. The replication process and the structures of the proteins involved in replication are reviewed in the light of potential drug development and of herpesvirus evolution. The structures of the proteins involved in lytic replication show the relationship between herpesviruses and tailed bacteriophages, furthermore they show that EBV proteins tend to be more complex than their counterparts in other organisms. In this review, we could show the phylogenetic position of the herpesvirus helicase close to the Dda helicases involved in initiation of replication of the caudovirales.

14.
Viruses ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36298761

RESUMO

Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res. 323-785) with confirmed nucleotide hydrolase and DNA-binding activity but an elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy. It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 Å structure of the N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same domain organization has been identified in a family of putative helicases from large DNA viruses, bacteriophages, and selfish DNA elements.


Assuntos
DNA Primase , Vaccinia virus , DNA Primase/química , DNA Primase/genética , DNA Primase/metabolismo , Microscopia Crioeletrônica , Vaccinia virus/genética , DNA Helicases/genética , DNA , Replicação do DNA , Nucleotídeos
15.
J Mol Biol ; 433(13): 167009, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33901538

RESUMO

Poxviruses are enveloped viruses with a linear, double-stranded DNA genome. Viral DNA synthesis is achieved by a functional DNA polymerase holoenzyme composed of three essential proteins. For vaccinia virus (VACV) these are E9, the catalytic subunit, a family B DNA polymerase, and the heterodimeric processivity factor formed by D4 and A20. The A20 protein links D4 to the catalytic subunit. High-resolution structures have been obtained for the VACV D4 protein in complex with an N-terminal fragment of A20 as well as for E9. In addition, biochemical studies provided evidence that a poxvirus-specific insertion (insert 3) in E9 interacts with the C-terminal residues of A20. Here, we provide solution structures of two different VACV A20 C-terminal constructs containing residues 304-426, fused at their C-terminus to either a BAP (Biotin Acceptor Peptide)-tag or a short peptide containing the helix of E9 insert 3. Together with results from titration studies, these structures shed light on the molecular interface between the catalytic subunit and the processivity factor component A20. The interface comprises hydrophobic residues conserved within the Chordopoxvirinae subfamily. Finally, we constructed a HADDOCK model of the VACV A20304-426-E9 complex, which is in excellent accordance with previous experimental data.


Assuntos
DNA Polimerase Dirigida por DNA/química , Domínios Proteicos , Vaccinia virus/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Soluções/química , Vaccinia virus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
16.
J Biol Chem ; 284(37): 25280-9, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19586911

RESUMO

Deoxyuridine 5'-triphosphate pyrophosphatases (dUTPases) are ubiquitous enzymes essential for hydrolysis of dUTP, thus preventing its incorporation into DNA. Although Epstein-Barr virus (EBV) dUTPase is monomeric, it has a high degree of similarity with the more frequent trimeric form of the enzyme. In both cases, the active site is composed of five conserved sequence motifs. Structural and functional studies of mutants based on the structure of EBV dUTPase gave new insight into the mechanism of the enzyme. A first mutant allowed us to exclude a role in enzymatic activity for the disulfide bridge involving the beginning of the disordered C terminus. Sequence alignments revealed two groups of dUTPases, based on the position in sequence of a conserved aspartic acid residue close to the active site. Single mutants of this residue in EBV dUTPase showed a highly impaired catalytic activity, which could be partially restored by a second mutation, making EBV dUTPase more similar to the second group of enzymes. Deletion of the flexible C-terminal tail carrying motif V resulted in a protein completely devoid of enzymatic activity, crystallizing with unhydrolyzed Mg(2+)-dUTP complex in the active site. Point mutations inside motif V highlighted the essential role of lid residue Phe(273). Magnesium appears to play a role mainly in substrate binding, since in absence of Mg(2+), the K(m) of the enzyme is reduced, whereas the k(cat) is less affected.


Assuntos
Herpesvirus Humano 4/enzimologia , Pirofosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X/métodos , Cinética , Magnésio/química , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
17.
Artigo em Inglês | MEDLINE | ID: mdl-20124710

RESUMO

The 1.6 A resolution structure of the micromolar competitive inhibitor S-(N,N-dimethylaminoethyl) phenylacetothiohydroximate-O-sulfate bound to Sinapis alba myrosinase, a plant thioglucosidase, is reported. Myrosinase and its substrates, the glucosinolates, are part of the plant's defence system. The sulfate group and the phenyl group of the inhibitor bind to the aglycon-binding site of the enzyme, whereas the N,N-dimethyl group binds to the glucose-binding site and explains the large improvement in binding affinity compared with previous compounds. The structure suggests ways to increase the potency and specificity of the compound by improving the interactions with the hydrophobic pocket of the aglycon-binding site.


Assuntos
Inibidores Enzimáticos/química , Glicosídeo Hidrolases/química , Oximas/química , Sinapis/enzimologia , Compostos de Sulfidrila/química , Ésteres do Ácido Sulfúrico/química , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Oximas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ésteres do Ácido Sulfúrico/metabolismo
18.
Antivir Ther ; 14(5): 655-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19704168

RESUMO

BACKGROUND: The Epstein-Barr virus (EBV) protease (PR), coded by the BVRF2 gene, is essential for the maturation of the viral capsid and viral DNA packaging during the late stage of the EBV lytic cycle. Like the other herpesvirus serine PRs, EBV PR could be a target for the inhibition of EBV replication. To date, no data have been reported on the inhibition of EBV PR messenger RNA (mRNA) by small interfering RNA (siRNA). METHODS: In this study, siRNAs targeting EBV PR were delivered to the epithelial 293 cell line stably transfected with the complete B95-8 EBV episome. EBV DNA and PR mRNA were quantified by real-time PCR in cells and supernatant, protein expression was assessed by immunoblotting, and production of EBV infectious particles in the culture medium was measured by Raji cell superinfection. RESULTS: The EBV PR mRNA within the cells was reduced by 73%, the PR protein by 35% and the amount of virus in the cell supernatant was drastically decreased by 86% or 95%, depending on the method. CONCLUSIONS: The strong effect of the siRNA targeting EBV PR on EBV replication attests to the crucial role played by EBV PR in the production of infectious particles and suggests that targeting this enzyme can be a new strategy against EBV-associated diseases where virus replication occurs.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Peptídeo Hidrolases/metabolismo , RNA Interferente Pequeno , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/genética , Humanos , Peptídeo Hidrolases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 12): 750-757, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31797817

RESUMO

The cryo-electron microscopy (cryo-EM) structure of the complex between the trimeric human adenovirus B serotype 3 fibre knob and human desmoglein 2 fragments containing cadherin domains EC2 and EC3 has been published, showing 3:1 and 3:2 complexes. Here, the crystal structure determined at 4.5 Šresolution is presented with one EC2-EC3 desmoglein fragment bound per fibre knob monomer in the asymmetric unit, leading to an apparent 3:3 stoichiometry. However, in concentrated solution the 3:2 complex is predominant, as shown by small-angle X-ray scattering (SAXS), while cryo-EM at lower concentrations showed a majority of the 3:1 complex. Substitution of the calcium ions bound to the desmoglein domains by terbium ions allowed confirmation of the X-ray model using their anomalous scattering and shows that at least one binding site per cluster of calcium ions is intact and exchangeable and, combined with SAXS data, that the cadherin domains are folded even in the distal part that is invisible in the cryo-EM reconstruction.


Assuntos
Adenovírus Humanos/metabolismo , Caderinas/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desmogleína 2/química , Desmogleína 2/metabolismo , Adenovírus Humanos/classificação , Sequência de Aminoácidos , Caderinas/química , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Sorogrupo
20.
Nat Commun ; 10(1): 1181, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862836

RESUMO

Attachment of human adenovirus (HAd) to the host cell is a critical step of infection. Initial attachment occurs via the adenoviral fibre knob protein and a cellular receptor. Here we report the cryo-electron microscopy (cryo-EM) structure of a <100 kDa non-symmetrical complex comprising the trimeric HAd type 3 fibre knob (HAd3K) and human desmoglein 2 (DSG2). The structure reveals a unique stoichiometry of 1:1 and 2:1 (DSG2: knob trimer) not previously observed for other HAd-receptor complexes. We demonstrate that mutating Asp261 in the fibre knob is sufficient to totally abolish receptor binding. These data shed new light on adenovirus infection strategies and provide insights for adenoviral vector development and structure-based design.


Assuntos
Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/metabolismo , Desmogleína 2/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/patogenicidade , Asparagina/genética , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Desmogleína 2/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos , Receptores Virais/ultraestrutura , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA