Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(13): 135002, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694164

RESUMO

A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (∼30-900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

2.
Phys Rev Lett ; 113(13): 135001, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302895

RESUMO

A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

3.
Phys Rev Lett ; 110(4): 045003, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166172

RESUMO

A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.

4.
Phys Rev Lett ; 108(15): 155002, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587261

RESUMO

Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

5.
Phys Rev Lett ; 106(11): 115001, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469867

RESUMO

The first measurements of turbulent stresses and flows inside the separatrix of a tokamak H-mode plasma are reported, using a reciprocating multitip Langmuir probe at the DIII-D tokamak. A strong co-current rotation layer at the separatrix is found to precede intrinsic rotation development in the core. The measured fluid turbulent stresses transport toroidal momentum outward against the velocity gradient and thus try to sustain the edge layer. However, large kinetic stresses must exist to explain the net inward momentum transport leading to co-current core plasma rotation. The importance of such kinetic stresses is corroborated by the success of a simple orbit loss model, representing a purely kinetic mechanism, in the prediction of features of the edge corotation layer.

6.
Phys Rev Lett ; 107(5): 055004, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867077

RESUMO

A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure.

7.
Rev Sci Instrum ; 92(4): 043518, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243419

RESUMO

Sixteen new tangential views for the charge exchange recombination (CER) spectroscopy diagnostic at DIII-D were installed in 2019 on the high-field side (HFS) of the tokamak with the main goal being the measurement of main-ion (deuterium) poloidal rotation. Eight of the new views are connected to spectrometers, which view the main-ion spectrum, adding main-ion measurements where there were previously none, and another eight new views increased the spatial resolution of existing impurity (carbon) measurements on the HFS. When combined with the existing low-field side measurements, measurements at two locations on flux surfaces out to a normalized minor radius of ≈0.6 are possible. The new tangential views have been used to measure the deuterium poloidal rotation directly for the first time using the Poloidal Asymmetry in Angular Rotation (PAAR) method. These new measurements enable further testing of the validity of neoclassical poloidal rotation predictions. Separate measurements of the radial electric field can be made for an impurity ion and the main-ion by combining the PAAR measurements with additional CER measurements of toroidal rotation, temperature, and density. These independent measurements of the radial electric field agree reasonably well.

8.
Int J Tuberc Lung Dis ; 24(7): 694-699, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718402

RESUMO

BACKGROUND: In 2016, 3% of newly diagnosed patients with tuberculosis (TB) left the United States, of whom 24% moved to Mexico. Continuity of care for TB is important to ensure patients complete treatment and reduce TB transmission. CureTB provides continuity of care for patients with TB who move out of the United States by referring them for care at their destination.METHODS: Analysis of CureTB data collected between January 2012 to December 2015 to describe demographics and outcomes of referred patients and examine factors contributing to successful treatment outcomes.RESULTS: CureTB received 1347 referrals mostly from health departments and law enforcement agencies in the United States (92%). A total of 858 referrals were for patients with verified or possible TB (64%). Most patients moved to Mexico or other Latin American countries (96%) and completed treatment after departing (78%). Poor treatment outcomes were associated with being in custody (33%), not being interviewed by CureTB (30%), and not having diabetes (18%).CONCLUSION: CureTB successfully promoted transnational continuity of care for patients by exchanging information with international public health authorities and linking them directly with patients. This patient-centered strategy helps improve TB treatment success and reduce the global burden and transmission of TB.


Assuntos
Tuberculose , Continuidade da Assistência ao Paciente , Humanos , México , Encaminhamento e Consulta , Resultado do Tratamento , Tuberculose/terapia , Estados Unidos
9.
Rev Sci Instrum ; 89(10): 10D111, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399861

RESUMO

We report tests of an alternate technique for constraining MHD equilibrium analysis in tokamak plasmas using internal magnetic field measurements based on | B | measurements from the motional Stark splitting of Dα spectral lines emitted by a neutral heating beam (MSE-LS). We compare results using MSE-LS with those of the standard equilibrium analysis technique based on line polarization of the Dα emission (MSE-LP). An alternative to MSE-LP is needed in future devices such as ITER where MSE-LP will be difficult due to a plasma-induced coating of the first optical element. The tests utilized data from 10 DIII-D shots with 7 MSE-LS and 14 MSE-LP views covering a range of radii along the outer midplane of the plasma. Seven MSE-LS measurements can contribute significantly to the equilibrium reconstruction of pressure and q profiles using both synthetic and experimental DIII-D MSE-LS data. For example, 7 MSE-LS plus seven MSE-LP measurements give a fit quality that is as good as the same cases with 14 MSE-LP measurements. Analyzing synthetic data for 14 MSE-LS measurements shows significant improvement in fitting quality over the case with 7 MSE-LS locations.

10.
Rev Sci Instrum ; 89(10): 10D116, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399968

RESUMO

A new calibration method for the DIII-D charge-exchange spectroscopy system produces a smoother impurity density profile compared to previous techniques, improving the accuracy of the impurity density profile reconstruction. The relative intensity calibration between the chords of the DIII-D charge-exchange recombination spectroscopy system is performed by firing neutral beams into the evacuated vacuum vessel pre-filled with neutral gas. Relative calibration is required in order to account for uncertainty in the 3D geometry of the neutral beam. Previous methods using helium gas have been improved by using xenon, which emits an emission line close to the commonly used carbon wavelength 5290.5 Å, as well as improved timing of the gas injection, inclusion of variations in the vessel pressure, and timing of neutral beam injection. Photoemission spectra recorded by 112 sightlines viewing 6 neutral beams are compared and used to form a relative calibration factor for each sightline. This relative calibration is shown to improve the quality of the measured ion density profile.

11.
Rev Sci Instrum ; 89(10): 10D101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399755

RESUMO

A synthetic charge exchange recombination spectroscopy diagnostic based on the FIDASIM modeling suite has been created for the DIII-D tokamak. This synthetic diagnostic assumes that the ions have Maxwellian distribution functions on each flux surface and models emission from charge exchange events between the beam neutrals and a fully ionized impurity. This work was motivated by the observation of non-Gaussian spectra that may be caused by spatial averaging, atomic physics, or non-Maxwellian distribution functions. Measurements of non-Gaussian spectra commonly observed in the high confinement mode pedestal and in plasmas with large core gradients are compared to the synthetic diagnostic. Spatial averaging alone cannot account for the observations in these two cases, opening up the possibility of there being other causes such as non-Maxwellian distribution functions. The synthetic diagnostic has also been used to resolve a long-standing issue: it is shown that the lower temperatures measured by using vertical view chords relative to tangential view chords are due to increased spatial averaging for vertical views due to the DIII-D neutral beams being approximately twice as tall as they are wide.

12.
Rev Sci Instrum ; 89(10): 10D110, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399818

RESUMO

Main-ion charge exchange recombination spectroscopy (MICER) uses the neutral beam induced D α spectrum to measure the local deuterium ion (D+) temperature, rotation, and density, as well as parameters related to the neutral beams, fast ions, and magnetic field. An edge MICER system consisting of 16 densely packed chords was recently installed on DIII-D, extending the MICER technique from the core to the pedestal and steep gradient region of H-mode plasmas where the D+ and commonly measured impurity ion properties can differ significantly. A combination of iterative collisional radiative modeling techniques and greatly accelerated spectral fitting allowed the extension of this diagnostic technique to the plasma edge where the steep gradients introduce significant diagnostic challenges. The importance of including the fast ion D α emission in the fit to the spectrum for the edge system is investigated showing that it is typically not important except for cases which can have significant fast ion fractions near the plasma edge such as QH-mode. Example profiles from an Ohmic L-mode and a high power ITER baseline case show large differences in the toroidal rotation of the two species near the separatrix including a strong co-current D+ edge rotation. The measurements and analysis demonstrate the state of the art in active spectroscopy and integrated modeling for diagnosing fusion plasmas and the importance of direct main ion measurements.

13.
Curr Biol ; 10(15): 939-42, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10959844

RESUMO

The roles of the Ca2+-mobilising messenger inositol 1,4,5-trisphosphate (InsP3) in heart are unclear, although many hormones activate InsP3 production in cardiomyocytes and some of their inotropic, chronotropic and arrhythmogenic effects may be due to Ca2+ release mediated by InsP3 receptors (InsP3Rs) [1-3]. In the present study, we examined the expression and subcellular localisation of InsP3R isoforms, and investigated their potential role in modulating excitation-contraction coupling (EC coupling). Western, PCR and InsP3-binding analysis indicated that both atrial and ventricular myocytes expressed mainly type II InsP3Rs, with approximately sixfold higher levels of InsP3Rs in atrial cells. Co-immunostaining of atrial myocytes with antibodies against type II ryanodine receptors (RyRs) and type II InsP3Rs revealed that the latter were arranged in the subsarcolemmal space where they largely co-localised with the junctional RyRs. Stimulation of quiescent or electrically paced atrial myocytes with a membrane-permeant InsP3 ester, which enters cells and directly activates InsP3Rs, caused the appearance of spontaneous Ca2+-release events. In addition, in paced cells, the InsP3 ester evoked an increase in the amplitudes of action potential-evoked Ca2+ transients. These data indicate that atrial cardiomyocytes express functional InsP3Rs, and that these channels could modulate EC coupling.


Assuntos
Canais de Cálcio/metabolismo , Coração/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Western Blotting , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato , Miocárdio/citologia , Reação em Cadeia da Polimerase , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia
14.
Rev Sci Instrum ; 78(3): 033505, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17411183

RESUMO

Fast ions are produced by neutral beam injection and ion cyclotron heating in toroidal magnetic fusion devices. As deuterium fast ions orbit around the device and pass through a neutral beam, some deuterons neutralize and emit D(alpha) light. For a favorable viewing geometry, the emission is Doppler shifted away from other bright interfering signals. In the 2005 campaign, we built a two channel charge-coupled device based diagnostic to measure the fast-ion velocity distribution and spatial profile under a wide variety of operating conditions. Fast-ion data are acquired with a time resolution of approximately 1 ms, spatial resolution of approximately 5 cm, and energy resolution of approximately 10 keV. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Neutral particle and neutron diagnostics corroborate the D(alpha) measurement. Examples of fast-ion slowing down and pitch angle scattering in quiescent plasma and fast-ion acceleration by high harmonic ion cyclotron heating are presented.

15.
J Thromb Haemost ; 15(9): 1807-1817, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28632925

RESUMO

Essentials Kallikrein amplifies contact activation and is a potential target for preventing thrombosis. We developed and characterized a kallikrein aptamer using convergent evolution and kinetic assays. Kall1-T4 prolongs intrinsic clotting time by inhibiting factor XIIa-mediated prekallikrein activation. Kall1-T4 decreases high-molecular-weight kininogen cleavage and bradykinin release. SUMMARY: Background Plasma kallikrein is a serine protease that plays an integral role in many biological processes, including coagulation, inflammation, and fibrinolysis. The main function of kallikrein in coagulation is the amplification of activated factor XII (FXIIa) production, which ultimately leads to thrombin generation and fibrin clot formation. Kallikrein is generated by FXIIa-mediated cleavage of the zymogen prekallikrein, which is usually complexed with the non-enzymatic cofactor high molecular weight kininogen (HK). HK also serves as a substrate for kallikrein to generate the proinflammatory peptide bradykinin (BK). Interestingly, prekallikrein-deficient mice are protected from thrombotic events while retaining normal hemostatic capacity. Therefore, therapeutic targeting of kallikrein may provide a safer alternative to traditional anticoagulants with anti-inflammatory benefits. Objectives To isolate and characterize an RNA aptamer that binds to and inhibits plasma kallikrein, and to elucidate its mechanism of action. Methods and Results Using convergent Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we isolated an RNA aptamer that targets kallikrein. This aptamer, Kall1-T4, specifically binds to both prekallikrein and kallikrein with similar subnanomolar binding affinities, and dose-dependently prolongs fibrin clot formation in an activated partial thromboplastin time (APTT) coagulation assay. In a purified in vitro system, Kall1-T4 inhibits the reciprocal activation of prekallikrein and FXII primarily by reducing the rate of FXIIa-mediated prekallikrein activation. Additionally, Kall1-T4 significantly reduces kallikrein-mediated HK cleavage and subsequent BK release. Conclusions We have isolated a specific and potent inhibitor of prekallikrein/kallikrein activity that serves as a powerful tool for further elucidating the role of kallikrein in thrombosis and inflammation.


Assuntos
Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bradicinina/metabolismo , Calicreínas/metabolismo , Trombose/prevenção & controle , Anticoagulantes/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Relação Dose-Resposta a Droga , Fator XIIa/metabolismo , Humanos , Calicreínas/genética , Cinética , Cininogênio de Alto Peso Molecular/metabolismo , Tempo de Tromboplastina Parcial , Pré-Calicreína/metabolismo , Ligação Proteica , Trombose/sangue , Trombose/genética
16.
Rev Sci Instrum ; 87(11): 11E545, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910689

RESUMO

A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

17.
Rev Sci Instrum ; 87(11): 11E553, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910328

RESUMO

Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

18.
Rev Sci Instrum ; 87(11): 11E512, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910369

RESUMO

The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.

19.
Circulation ; 102(15): 1814-21, 2000 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-11023937

RESUMO

BACKGROUND: In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. METHODS AND RESULTS: Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 21/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC(50) [mol/L] NE 5.5+/-0.1, n=12; EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC(50) [mol/L] NE 5.8+/-0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC(50) [mol/L] NE 5.7+/-0.2; EPI 5.8+/-0.1). Ventricular membranes from Fallot infants, labeled with (-)-[(125)I]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. CONCLUSIONS: Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Tetralogia de Fallot/metabolismo , Troponina I/metabolismo , Pré-Escolar , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/metabolismo , Feminino , Guanosina Trifosfato/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Humanos , Lactente , Masculino , Contração Miocárdica , Miocárdio/patologia , Fosforilação , Serina/metabolismo , Treonina/metabolismo
20.
Rev Sci Instrum ; 86(10): 103509, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520957

RESUMO

Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA