Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 13(7): 625-7, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713818

RESUMO

Nestled between the Japanese islands of Honshu and Shikoku in the Seto Inland Sea lies Awaji Island ( Awaji-shima). Thought by some to be the oldest settled area in Japan, the island found new life in January 2012 as the birthplace of the first IFReC-SIgN Winter School on Advanced Immunology, jointly organized by research institutes in Japan and Singapore.


Assuntos
Alergia e Imunologia/educação , Educação Continuada/métodos , Educação de Pós-Graduação/métodos , Japão , Singapura
2.
Immunogenetics ; 75(4): 341-353, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119386

RESUMO

T cell receptor beta chain (TCRß) diversity (Dß) gene segments are highly conserved across evolution, with trout Dß1 sequence identical to human and mouse Dß1. A key conserved feature is enrichment for glycine in all three Dß reading frames (RFs). Previously, we found that replacement of mouse Dß1 with a typical immunoglobulin DH sequence, which unlike Dß is enriched for tyrosine, leads to an increase in the use of tyrosine in TCRß complementarity determining region 3 (CDR-B3) after thymic selection, altering T cell numbers, CDR-B3 diversity, and T cell function. To test whether the incorporation of charged amino acids into the Dß sequence in place of glycine would also influence T cell biology, we targeted the TCRß locus with a novel glycine-deficient DßDKRQ allele that replaces Dß1 coding sequence with charged amino acids in all three reading frames. Developing T cells using DßDKRQ expressed TCR CDR-B3s depleted of tyrosine and glycine and enriched for germline-encoded lysine, arginine, and glutamine. Total thymocytes declined in number during the process of ß selection that occurs during the transition from the DN3bc to DN4 stage. Conventional thymocyte and T cell numbers remained reduced at all subsequent thymic stages and in the spleen. By contrast, regulatory T cell numbers were increased in Peyer's patches and the large intestine. In terms of functional consequences, T cell reactivity to an ovalbumin immunodominant epitope was reduced. These findings buttress the view that natural selection of Dß sequence is used to shape the pre-immune TCRß repertoire, affecting both conventional and regulatory T cell development and influencing epitope recognition.


Assuntos
Aminoácidos , Regiões Determinantes de Complementaridade , Camundongos , Animais , Humanos , Regiões Determinantes de Complementaridade/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Sequência de Aminoácidos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Epitopos Imunodominantes , Células Germinativas/metabolismo , Tirosina/metabolismo , Glicina/metabolismo
3.
Int Immunol ; 33(2): 79-90, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32889526

RESUMO

In T cell-dependent antibody responses, some of the activated B cells differentiate along extrafollicular pathways into low-affinity memory and plasma cells, whereas others are involved in subsequent germinal center (GC) formation in follicular pathways, in which somatic hypermutation and affinity maturation occur. The present study demonstrated that Bim, a proapoptotic BH3-only member of the Bcl-2 family, contributes to the establishment of the B-cell repertoire from early to late stages of immune responses to T cell-dependent antigens. Extrafollicular plasma cells grew in the spleen during the early immune response, but their numbers rapidly declined with the appearance of GC-derived progeny in wild-type mice. By contrast, conditional Bim deficiency in B cells resulted in expansion of extrafollicular IgG1+ antibody-forming cells (AFCs) and this expansion was sustained during the late response, which hampered the formation of GC-derived high-affinity plasma cells in the spleen. Approximately 10% of AFCs in mutant mice contained mutated VH genes; thus, Bim deficiency appears not to impede the selection of high-affinity AFC precursor cells. These results suggest that Bim contributes to the replacement of low-affinity antibody by high-affinity antibody as the immune response progresses.

4.
J Immunol ; 205(2): 346-358, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554431

RESUMO

IL-23 promotes autoimmune disease, including Th17 CD4 T cell development and autoantibody production. In this study, we show that a deficiency of the p19 component of IL-23 in the autoimmune BXD2 (BXD2-p19-/- ) mouse leads to a shift of the follicular T helper cell program from follicular T helper (Tfh)-IL-17 to Tfh-IFN-γ. Although the germinal center (GC) size and the number of GC B cells remained the same, BXD2-p19-/- mice exhibited a lower class-switch recombination (CSR) in the GC B cells, leading to lower serum levels of IgG2b. Single-cell transcriptomics analysis of GC B cells revealed that whereas Ifngr1, Il21r, and Il4r genes exhibited a synchronized expression pattern with Cxcr5 and plasma cell program genes, Il17ra exhibited a synchronized expression pattern with Cxcr4 and GC program genes. Downregulation of Ighg2b in BXD2-p19-/- GC B cells was associated with decreased expression of CSR-related novel base excision repair genes that were otherwise predominantly expressed by Il17ra + GC B cells in BXD2 mice. Together, these results suggest that although IL-23 is dispensable for GC formation, it is essential to promote a population of Tfh-IL-17 cells. IL-23 acts indirectly on Il17ra + GC B cells to facilitate CSR-related base excision repair genes during the dark zone phase of GC B cell development.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/metabolismo , Interleucina-23/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p19/genética , Switching de Imunoglobulina , Imunoglobulina G/genética , Interferon gama/metabolismo , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Immunol Rev ; 284(1): 106-119, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944758

RESUMO

Although at first glance the diversity of the immunoglobulin repertoire appears random, there are a number of mechanisms that act to constrain diversity. For example, key mechanisms controlling the diversity of the third complementarity determining region of the immunoglobulin heavy chain (CDR-H3) include natural selection of germline diversity (DH ) gene segment sequence and somatic selection upon passage through successive B-cell developmental checkpoints. To test the role of DH gene segment sequence, we generated a panel of mice limited to the use of a single germline or frameshifted DH gene segment. Specific individual amino acids within core DH gene segment sequence heavily influenced the absolute numbers of developing and mature B-cell subsets, antibody production, epitope recognition, protection against pathogen challenge, and susceptibility to the production of autoreactive antibodies. At the tip of the antigen-binding loop (PDB position 101) in CDR-H3, both natural (germline) and somatic selection favored tyrosine while disfavoring the presence of hydrophobic amino acids. Enrichment for arginine in CDR-H3 appeared to broaden recognition of epitopes of varying hydrophobicity, but led to diminished binding intensity and an increased likelihood of generating potentially pathogenic dsDNA-binding autoreactive antibodies. The phenotype of altering the sequence of the DH was recessive for T-independent antibody production, but dominant for T-cell-dependent responses. Our work suggests that the antibody repertoire is structured, with the sequence of individual DH selected by evolution to preferentially generate an apparently preferred category of antigen-binding sites. The result of this structured approach appears to be a repertoire that has been adapted, or optimized, to produce protective antibodies for a wide range of pathogen epitopes while reducing the likelihood of generating autoreactive specificities.


Assuntos
Diversidade de Anticorpos/genética , Subpopulações de Linfócitos B/imunologia , Sítios de Ligação de Anticorpos/genética , Regiões Determinantes de Complementaridade/genética , Cadeias Pesadas de Imunoglobulinas/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação de Anticorpos/imunologia , Epitopos/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Linfócitos T/imunologia
6.
Nat Immunol ; 10(7): 669-71, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19536187

RESUMO

It has been 10 years since the first workshop on natural killer T cells helped to launch a growth phase for this field of research.


Assuntos
Células T Matadoras Naturais/imunologia , Timo/imunologia , Animais , Antígenos CD1/imunologia , Humanos , Células T Matadoras Naturais/citologia , Timo/citologia
7.
Nat Immunol ; 9(9): 1005-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18711439

RESUMO

The RIKEN Research Center for Allergy and Immunology in Japan is reaching out regionally to the primary immunodeficiency disease community and internationally to graduate students and postdoctoral fellows.


Assuntos
Alergia e Imunologia/educação , Alergia e Imunologia/tendências , Síndromes de Imunodeficiência , Educação Continuada , Bolsas de Estudo , Humanos , Japão , Pesquisadores
8.
Adv Exp Med Biol ; 1254: 1-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32323265

RESUMO

Since the identification of B cells in 1965 (Cooper  et al. 1965), three has been tremendous progress in our understanding of B cell development, maturation and function. A number of B cell subpopulations, including B-1, B-2 and regulatory B cells, have been identified. B-1 cells mainly originate from the fetal liver and contain B-1a and B-1b subsets. B-2 cells are derived from the bone marrow (BM) and can be further classified into follicular B (FOB) and marginal zone B (MZB) cells. Regulatory B cells (Bregs) function to suppress immune responses, primarily by production of the anti-inflammatory cytokine IL-10. B cell tolerance is established at several checkpoints, during B cell development in the BM (central tolerance) as well as during B cell maturation and activation in the periphery (peripheral tolerance). This chapter will focus on the regulation of important processes during the development and maturation of B-1 and B-2 cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Tolerância Imunológica , Ativação Linfocitária , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Humanos , Tolerância Periférica
9.
Curr Top Microbiol Immunol ; 408: 47-65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28879521

RESUMO

FCRLA is homologous to receptors for the Fc portion of IgG (FcγR) and is located in the same region of human chromosome one, but has several unusual and unique features. It is a soluble resident ER protein retained in this organelle by unknown mechanisms involving the N-terminal domain, a disordered domain with three Cys residues in close proximity in the human protein. Unlike the FcγRs, FCRLA is not glycosylated and has no transmembrane region. FCRLA is included in this CTMI volume on IgM-binding proteins because it binds IgM in the ER, but quite surprisingly, given the isotype-restricted ligand specificity of the other FcRs, it also binds all other Ig isotypes so far tested, IgG and IgA. In the case of IgM, there is even preferential binding of the secretory and not the transmembrane form. Among B cells, FCRLA is most highly expressed in the germinal center and shows little expression in plasma cells. Based on these observations, we propose that one human FCRLA function is to stop GC B cells from secreting IgM, which would act as a decoy receptor, thus preventing the B cells from capturing antigen, processing it, and presenting the antigen-derived peptides to T follicular helper cells. Without help from these T cells, there would be limited B cell isotype switching, proliferation, and differentiation. On the other hand, FCRLA is downregulated in plasma cells, where IgM secretion is an essential function. FCRLA may also act as a chaperone involved by unknown mechanisms in the proper assembly of Ig molecules of all isotypes.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem da Célula , Retículo Endoplasmático/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos B/imunologia , Humanos , Isotipos de Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Receptores Fc , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
10.
J Immunol ; 190(11): 5559-66, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23630348

RESUMO

VH replacement provides a unique RAG-mediated recombination mechanism to edit nonfunctional IgH genes or IgH genes encoding self-reactive BCRs and contributes to the diversification of Ab repertoire in the mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. In this article, we show that cross-linking BCRs induces VH replacement in human EU12 µHC(+) cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases but is inhibited by CD19 costimulation, presumably through activation of the PI3K pathway. These results show that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Células Precursoras de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Antígenos CD19/metabolismo , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Ativação Enzimática , Rearranjo Gênico , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Tonsila Palatina/citologia , Células Precursoras de Linfócitos B/citologia , Proteínas Tirosina Quinases/metabolismo , Quinase Syk , Quinases da Família src/metabolismo
11.
Cell Immunol ; 272(2): 182-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22078318

RESUMO

FCRLA is an intracellular B cell protein that belongs to the FcR-like family. Using newly generated FCRLA-specific antibodies, we studied the constitutive expression pattern of mouse FCRLA and monitored changes during an immune response and following in vitro B cell activation. All B cell subpopulations examined expressed FCRLA. However, the level of FCRLA expression is determined by the stage of B cell differentiation. Low expression of FCRLA is characteristic of naïve follicular and marginal zone B cells. High expression was detected in a small fraction of activated B cells scattered along migratory pathways in the lymphoid tissues. FCRLA-bright cells could be subdivided into two subpopulations, with high and low/undetectable level of intracellular immunoglobulins, which phenotypically resemble either plasma or memory B cells. High expression of FCRLA in subset(s) of terminally differentiated B-cells suggests that, being an ER protein, FCRLA may participate in the regulation of immunoglobulin assembly and secretion.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptores Imunológicos/biossíntese , Receptores Imunológicos/imunologia , Animais , Anticorpos/imunologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ativação Linfocitária , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Receptores Imunológicos/genética , Transdução de Sinais
12.
Int Immunol ; 23(1): 43-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21149418

RESUMO

Fc receptor-like A (FCRLA) is an unusual member of the extended Fc receptor family. FCRLA has homology to receptors for the Fc portion of Ig (FCR) and to other FCRL proteins. However, unlike these other family representatives, which are typically transmembrane receptors with extracellular ligand-binding domains, FCRLA has no predicted transmembrane domain or N-linked glycosylation sites and is an intracellular protein. We show by confocal microscopy and biochemical assays that FCRLA is a soluble resident endoplasmic reticulum (ER) protein, but it does not possess the amino acid sequence KDEL as an ER retention motif in its C-terminus. Using a series of deletion mutants, we found that its ER retention is most likely mediated by the amino terminal partial Ig-like domain. We have identified ER-localized Ig as the FCRLA ligand. FCRLA is unique among the large family of Fc receptors, in that it is capable of associating with multiple Ig isotypes, IgM, IgG and IgA. Among hemopoietic cells, FCRLA expression is restricted to the B lineage and is most abundant in germinal center B lymphocytes. The studies reported here demonstrate that FCRLA is more broadly expressed among human B lineage cells than originally reported; it is found at significant levels in resting blood B cells and at varying levels in all B-cell subsets in tonsil.


Assuntos
Linfócitos B/imunologia , Retículo Endoplasmático/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Receptores Imunológicos/imunologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Receptores Fc , Linfócitos T/imunologia
14.
Front Immunol ; 13: 1114732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36861066

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.906649.].

15.
Front Immunol ; 13: 906649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189270

RESUMO

The early B cell protein λ5 is an essential component of the surrogate light chain and the preB cell receptor (preBCR), which is critical for optimal B cell development. To investigate the effect of λ5 and/or B cells on bone acquisition over time, we developed a panel of JH -/- , λ5-/-, JH -/- λ5-/-, and wild-type (WT) BALB/c mice and then studied postnatal bone development and aging in these mice at one, six, twelve, and twenty-two months of age. The trabecular bone volume over total volume (BV/TV) in JH -/- mice was similar to WT mice at all ages. In contrast, at six months of age and thereafter, λ5-/- and JH -/- λ5-/- mice demonstrated a severe decrease in trabecular bone mass. Surprisingly, bone mass in six-month-old λ5-/- and JH -/- λ5-/- mice was similar to or even lower than in aged (twenty-two-months) WT mice, suggesting accelerated skeletal aging. The postnatal development and the acquisition of cortical bone mass in JH -/- λ5-/- mice were generally comparable to WT. However, JH -/- λ5-/- mice showed a significant decrease in cortical BV/TV at six- and twelve months of age. To examine the contribution of λ5 and B cells to postnatal bone synthesis, we separately transplanted whole bone marrow cells from JH -/- λ5-/- and WT mice into irradiated JH -/- λ5-/- and WT recipients. WT recipients of JH -/- λ5-/- marrow cells failed to show acquisition of trabecular bone mass, whereas transplanting WT marrow cells into JH -/- λ5-/- recipients led to the recovery of trabecular bone mass. Transfer of WT marrow cells into JH -/- λ5-/- mice promoted synthesis of new cortical and trabecular bone. Our findings indicate that λ5 plays a major role in preserving bone mass during postnatal development and skeletal aging which is distinct from its role in B cell development. The absence of both λ5 and B cells in JH -/- λ5-/- mice leads to delayed acquisition of cortical bone during postnatal development. Dissecting the mechanism(s) by which λ5 regulates bone homeostasis may provide new avenues for the treatment of age-related loss of bone mass and osteoporosis.


Assuntos
Linfócitos B , Receptores de Células Precursoras de Linfócitos B , Envelhecimento , Animais , Linfócitos B/metabolismo , Densidade Óssea , Cadeias Leves Substitutas da Imunoglobulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Células Precursoras de Linfócitos B/metabolismo
16.
Cell Immunol ; 266(1): 24-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20869045

RESUMO

Fc receptor-like A (FCRLA) and FCRLB have homology to the transmembrane FCRL family members (FCRL 1-6) and to the conventional receptors for the Fc portion of immunoglobulin, but uniquely are cytosolic proteins expressed in B cells. Here we describe the phenotype of Fcrlb-gene targeted mice. B cell development and in vitro responses are normal; however, antibody responses to a T-dependent antigen are elevated. The gene encoding the inhibitory FcγRIIb is located nearby Fcrlb. Although Fcrlb-gene targeting had no effect on the function or basal expression of FcγRIIb, its expression was reduced following activation. This abnormal regulation was due to co-inheritance of Fcgr2b and the mutant Fcrlb allele from the 129 ES cells. A promoter polymorphism in the 129/Sv Fcgr2b allele results in diminished upregulation of FcγRIIb following B cell activation. Thus, we speculate that the enhanced antibody response seen in the FCRLB-deficient mice may be due to the Fcgr2b promoter.


Assuntos
Linfócitos B/imunologia , Receptores Fc/deficiência , Receptores de IgG/metabolismo , Animais , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofenóis/imunologia , Fenilacetatos/imunologia , Polimorfismo Genético/genética , Polimorfismo Genético/imunologia , Regiões Promotoras Genéticas/genética , Receptores Fc/genética , Receptores de IgG/genética , Vacinação
17.
Front Immunol ; 11: 573413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133088

RESUMO

Enrichment for tyrosine in immunoglobulin CDR-H3 is due in large part to natural selection of germline immunoglobulin DH sequence. We have previously shown that when DH sequence is modified to reduce the contribution of tyrosine codons, epitope recognition is altered and B cell development, antibody production, autoantibody production, and morbidity and mortality following pathogen challenge are adversely affected. TCRß diversity (Dß) gene segment sequences are even more highly conserved than DH, with trout Dß1 identical to human and mouse Dß1. We hypothesized that natural selection of Dß sequence also shapes CDR-B3 diversity and influences T cell development and T cell function. To test this, we used a mouse strain that lacked Dß2 and contained a novel Dß1 allele (DßYTL) that replaces Dß1 with an immunoglobulin DH, DSP2.3. Unlike Dß1, wherein glycine predominates in all three reading frames (RFs), in DSP2.3 there is enrichment for tyrosine in RF1, threonine in RF2, and leucine in RF3. Mature T cells using DßYTL expressed TCRs enriched at particular CDR-B3 positions for tyrosine but depleted of leucine. Changing Dß sequence altered thymocyte and peripheral T cell numbers and the T cell response to an ovalbumin immunodominant epitope. The differences in tyrosine content might explain, at least in part, why TCRs are more polyspecific and of lower affinity for their cognate antigens than their immunoglobulin counterparts.


Assuntos
Regiões Determinantes de Complementaridade , Genes de Cadeia Pesada de Imunoglobulina , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Cadeias Pesadas de Imunoglobulinas/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Timócitos/metabolismo , Animais , Imunização , Epitopos Imunodominantes , Cadeias Pesadas de Imunoglobulinas/genética , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Timócitos/imunologia , Tirosina
18.
Front Immunol ; 11: 2079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042119

RESUMO

We have previously shown that the sequence of the immunoglobulin diversity gene segment (D H ) helps dictate the structure and composition of complementarity determining region 3 of the immunoglobulin heavy chain (CDR-H3). In order to test the role of germline D sequence on the diversity of the preimmune TCRß repertoire of T cells, we generated a mouse with a mutant TCRß DJC locus wherein the Dß2-Jß2 gene segment cluster was deleted and the remaining diversity gene segment, Dß1 (IMGT:TRDB1), was replaced with DSP2.3 (IMGT:IGHD2-02), a commonly used B cell immunoglobulin D H gene segment. Crystallographic studies have shown that the length and thus structure of TCR CDR-B3 places amino acids at the tip of CDR-B3 in a position to directly interact with peptide bound to an MHC molecule. The length distribution of complementarity determining region 3 of the T cell receptor beta chain (CDR-B3) has been proposed to be restricted largely by MHC-specific selection, disfavoring CDR-B3 that are too long or too short. Here we show that the mechanism of control of CDR-B3 length depends on the Dß sequence, which in turn dictates exonucleolytic nibbling. By contrast, the extent of N addition and the variance of created CDR3 lengths are regulated by the cell of origin, the thymocyte. We found that the sequence of the D and control of N addition collaborate to bias the distribution of CDR-B3 lengths in the pre-immune TCR repertoire and to focus the diversity provided by N addition and the sequence of the D on that portion of CDR-B3 that is most likely to interact with the peptide that is bound to the presenting MHC.


Assuntos
Linfócitos B/imunologia , Regiões Determinantes de Complementaridade/genética , Imunoglobulina D/genética , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Diversidade de Anticorpos , Células Cultivadas , Engenharia Genética , Variação Genética , Células Germinativas , Camundongos , Camundongos Endogâmicos C57BL
20.
Front Immunol ; 10: 2063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552025

RESUMO

In the bone marrow, preB cells are found adjacent to the bone endosteum where bone synthesizing osteoblast and bone resorbing osteoclasts reside. Although there is evidence of interactions between preB and bone cells, the factors that contribute to such interactions are poorly understood. A critical checkpoint for preB cell development assesses the integrity of the nascent immunoglobulin µ heavy chain (HC) by testing whether it can participate in the formation of a preB cell receptor (preBCR), composed of the µ HC and surrogate light chain (LC). In this work, we tested whether loss of preBCR components can affect bone synthesis. A panel of gene targeted mice with sequential blocks in preBCR formation or function [surrogate light chain component lambda 5 deleted (λ5-/-), transmembrane domain of µHC deleted (IgM-mem-/-), and CD19 preBCR co-receptor deleted (CD19-/-)] were evaluated for effects on postnatal bone synthesis. Postnatal bone mass was analyzed in 6 month old mice using µ-CT, histomorphometry and double calcein labeling. Both cortical and trabecular bone mass were significantly decreased in the femurs of the λ5 and IgM-mem deficient mice. Histomorphometric analysis showed a decrease in the numbers of osteoblasts and osteoclasts in all three mutant strains. Double calcein labeling revealed a significant decrease in dynamic synthesis and mineralization of bone in λ5-/- mice. Our data strongly suggest that interference with preBCR formation or function affects bone homeostasis independent of the presence or absence of mature B cells, and that components of the preBCR play important, and potentially distinct, roles in regulating adult bone mass.


Assuntos
Osso e Ossos/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves Substitutas da Imunoglobulina/imunologia , Cadeias mu de Imunoglobulina/imunologia , Receptores de Células Precursoras de Linfócitos B/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/imunologia , Fêmur/metabolismo , Homeostase/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves Substitutas da Imunoglobulina/genética , Cadeias Leves Substitutas da Imunoglobulina/metabolismo , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/imunologia , Osteoclastos/metabolismo , Receptores de Células Precursoras de Linfócitos B/genética , Receptores de Células Precursoras de Linfócitos B/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Microtomografia por Raio-X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA