Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(5): 1247-1260, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36396738

RESUMO

Strategies to modify the gut microbiome in cancer patients using fecal microbiota transplantation (FMT) have gained momentum as a therapeutic intervention. However, how FMT impacts innate-like, antimicrobial T lymphocytes is unclear. In this study, we assessed peripheral blood (PB) mucosa-associated invariant T (MAIT) cell frequencies and functions in patients with metastatic renal cell carcinoma (mRCC) before and seven days after they received FMT as part of a clinical trial. We found comparable MAIT cell frequencies in healthy controls and mRCC patients. In contrast, γδ T cells exhibited a numerical decline in mRCC, which was partially reversed by FMT. We also found a significant increase in the PB CD4+ MAIT cell compartment of mRCC patients with or without FMT. Paired sample analyses revealed CD69 upregulation on MAIT cells accompanied by decreased PD-1 levels post-FMT. These changes were unique to MAIT cells as non-MAIT T lymphocytes showed either no trend or a trend in the opposite direction. Importantly, FMT did not render MAIT cells exhausted as also judged by their stable expression of TIM-3, LAG-3, BTLA, CTLA-4, TIGIT and VISTA. These findings were corroborated in functional assays in which MAIT cells were stimulated with MR1 ligands or with a combination of IL-12 and IL-18 to produce inflammatory cytokines and granzyme B. Indeed, when stimulated ex vivo with IL-12 and IL-18, MAIT cells mounted a more rigorous TNF-α response post-FMT. In conclusion, FMT improves MAIT cell functions, which should serve patients well in subsequent microbial challenges in the face of cancer-elicited immunosuppression. Trial Registration: https://clinicaltrials.gov/ Identifier: NCT04163289 (registration date: November 14, 2019).


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Células T Invariantes Associadas à Mucosa , Humanos , Interleucina-18/metabolismo , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Transplante de Microbiota Fecal , Neoplasias Renais/terapia , Neoplasias Renais/metabolismo , Interleucina-12/metabolismo
2.
Urol Int ; 106(6): 616-622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34883484

RESUMO

OBJECTIVE: Kidney stones are a common medical condition that is increasing in prevalence worldwide. Approximately, ∼80% of urinary calculi are composed of calcium oxalate (CaOx). There is a growing interest toward identifying therapeutic compounds that can inhibit the formation of CaOx crystals. However, some chemicals (e.g., antibiotics and bacterial metabolites) may directly promote crystallization. Current knowledge is limited regarding crystal promoters and inhibitors. Thus, we have developed an in vitro gel-based diffusion model to screen for substances that directly influence CaOx crystal formation. MATERIALS AND METHODS: We used double diffusion of sodium oxalate and calcium chloride-loaded paper disks along an agar medium to facilitate the controlled formation of monohydrate and dihydrate CaOx crystals. A third disk was used for the perpendicular diffusion of a test substance to assess its influence on CaOx crystal formation. RESULTS: We confirmed that citrates and magnesium are effective inhibitors of CaOx crystals. We also demonstrated that 2 strains of uropathogenic Escherichia coli are able to promote crystal formation. While the other tested uropathogens and most antibiotics did not change crystal formation, ampicillin was able to reduce crystallization. CONCLUSION: We have developed an inexpensive and high-throughput model to evaluate substances that influence CaOx crystallization.


Assuntos
Calcinose , Cálculos Renais , Cálculos Urinários , Antibacterianos/farmacologia , Oxalato de Cálcio , Cristalização , Humanos , Cálculos Renais/química , Cálculos Renais/tratamento farmacológico
3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743087

RESUMO

Emerging adulthood (ages 18-25) is a critical period for neurobiological development and the maturation of the hypothalamic-pituitary-adrenal axis. Recent findings also suggest that a natural perturbation of the gut microbiota (GM), combined with other factors, may create a unique vulnerability during this period of life. The GM of emerging adults is thought to be simpler, less diverse, and more unstable than either younger or older people. We postulate that this plasticity in the GM suggests a role in the rising mental health issues seen in westernized societies today via the gut-brain-microbiota axis. Studies have paid particular attention to the diversity of the microbiota, the specific function and abundance of bacteria, and the production of metabolites. In this narrative review, we focus specifically on diet, physical activity/exercise, substance use, and sleep in the context of the emerging adult. We propose that this is a crucial period for establishing a stable and more resilient microbiome for optimal health into adulthood. Recommendations will be made about future research into possible behavioral adjustments that may be beneficial to endorse during this critical period to reduce the probability of a "dysbiotic" GM and the emergence and severity of mental health concerns.


Assuntos
Microbioma Gastrointestinal , Adolescente , Adulto , Idoso , Encéfalo , Humanos , Sistema Hipotálamo-Hipofisário , Saúde Mental , Sistema Hipófise-Suprarrenal , Adulto Jovem
4.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361691

RESUMO

Lactobacillus crispatus is the dominant species in the vagina of many women. With the potential for strains of this species to be used as a probiotic to help prevent and treat dysbiosis, we investigated isolates from vaginal swabs with Lactobacillus-dominated and a dysbiotic microbiota. A comparative genome analysis led to the identification of metabolic pathways for synthesis and degradation of three major biogenic amines in most strains. However, targeted metabolomic analysis of the production and degradation of biogenic amines showed that certain strains have either the ability to produce or to degrade these compounds. Notably, six strains produced cadaverine, one produced putrescine, and two produced tyramine. These biogenic amines are known to raise vaginal pH, cause malodour, and make the environment more favourable to vaginal pathogens. In vitro experiments confirmed that strains isolated from women with a dysbiotic vaginal microbiota have higher antimicrobial effects against the common urogenital pathogens Escherichia coli and Enterococcus faecium. The results indicate that not all L. crispatus vaginal strains appear suitable for probiotic application and the basis for selection should not be only the overall composition of the vaginal microbiota of the host from which they came, but specific biochemical and genetic traits.


Assuntos
Anti-Infecciosos/metabolismo , Aminas Biogênicas/metabolismo , Doenças Urogenitais Femininas/metabolismo , Doenças Urogenitais Femininas/microbiologia , Lactobacillus crispatus/metabolismo , Microbiota , Vagina/microbiologia , Candida albicans/metabolismo , Disbiose/metabolismo , Disbiose/microbiologia , Enterococcus faecium/metabolismo , Escherichia coli/metabolismo , Feminino , Genômica/métodos , Humanos , Lactobacillus crispatus/classificação , Lactobacillus crispatus/genética , Metaboloma , Metabolômica/métodos , Filogenia , Prevotella/metabolismo , Probióticos/metabolismo
5.
BMC Oral Health ; 21(1): 245, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962608

RESUMO

BACKGROUND: Periodontal disease represents a major health concern. The administration of beneficial microbes has been increasing in popularity over efforts to manipulate the microbes using antimicrobial agents. This study determined the ability of Streptococcus salivarius to inhibit IL-6 and IL-8 production by gingival fibroblasts when activated by periodontal pathogens and their effect on the salivary microbiome. METHODS: Primary human gingival fibroblasts were challenged with Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum and a combination of all three. IL-6 and IL-8 cytokine release were measured. Using this same model, S. salivarius K12, M18 and different supernatant and whole-cell lysate fractions of S. salivarius K12 were administered to pathogen-induced fibroblasts. A patient study of healthy participants was also conducted to determine the effect S. salivarius K12 had on the native microbiome using 16S next generation sequence analysis. RESULTS: All pathogens tested induced a significant IL-6 and IL-8 response. S. salivarius K12 or M18, did not exhibit an increase in inflammatory cytokines. When either of the probiotic strains were co-administered with a pathogen, there were significant reductions in both IL-6 and IL-8 release. This effect was also observed when gingival fibroblasts were pre-treated with either S. salivarius K12 or M18 and then stimulated with the oral pathogens. Chewing gum containing S. salivarius K12 did not alter the salivary microbiome and did not increase inflammatory markers in the oral cavity. CONCLUSION: S. salivarius K12 and M18 prevented immune activation induced by periodontal disease pathogens. S. salivarius K12 did not alter the salivary microbiome or induce immune activation when administered as a chewing gum. These results warrant further study to determine if it may be an effective treatment in a model of periodontal disease.


Assuntos
Doenças Periodontais , Streptococcus salivarius , Aggregatibacter actinomycetemcomitans , Fusobacterium nucleatum , Humanos , Porphyromonas gingivalis
6.
Am J Gastroenterol ; 115(7): 1055-1065, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618656

RESUMO

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is an obesity-related disorder that is rapidly increasing in incidence and is considered the hepatic manifestation of the metabolic syndrome. The gut microbiome plays a role in metabolism and maintaining gut barrier integrity. Studies have found differences in the microbiota between NAFLD and healthy patients and increased intestinal permeability in patients with NAFLD. Fecal microbiota transplantation (FMT) can be used to alter the gut microbiome. It was hypothesized that an FMT from a thin and healthy donor given to patients with NAFLD would improve insulin resistance (IR), hepatic proton density fat fraction (PDFF), and intestinal permeability. METHODS: Twenty-one patients with NAFLD were recruited and randomized in a ratio of 3:1 to either an allogenic (n = 15) or an autologous (n = 6) FMT delivered by using an endoscope to the distal duodenum. IR was calculated by HOMA-IR, hepatic PDFF was measured by MRI, and intestinal permeability was tested using the lactulose:mannitol urine test. Additional markers of metabolic syndrome and the gut microbiota were examined. Patient visits occurred at baseline, 2, 6 weeks, and 6 months post-FMT. RESULTS: There were no significant changes in HOMA-IR or hepatic PDFF in patients who received the allogenic or autologous FMT. Allogenic FMT patients with elevated small intestinal permeability (>0.025 lactulose:mannitol, n = 7) at baseline had a significant reduction 6 weeks after allogenic FMT. DISCUSSION: FMT did not improve IR as measured by HOMA-IR or hepatic PDFF but did have the potential to reduce small intestinal permeability in patients with NAFLD.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Intestino Delgado , Hepatopatia Gordurosa não Alcoólica/terapia , Método Duplo-Cego , Duodenoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Permeabilidade
7.
J Shoulder Elbow Surg ; 27(10): 1734-1739, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29908759

RESUMO

BACKGROUND: Advances in DNA sequencing technologies have made it possible to detect microbial genome sequences (microbiomes) within tissues once thought to be sterile. We used this approach to gain insights into the likely sources of Cutibacterium acnes (formerly Propionibacterium acnes) infections within the shoulder. METHODS: Tissue samples were collected from the skin, subcutaneous fat, anterior supraspinatus tendon, middle glenohumeral ligament, and humeral head cartilage of 23 patients (14 male and 9 female patients) during primary arthroplasty surgery. Total DNA was extracted and microbial 16S ribosomal RNA sequencing was performed using an Illumina MiSeq system. Data analysis software was used to generate operational taxonomic units for quantitative and statistical analyses. RESULTS: After stringent removal of contamination, genomic DNA from various Acinetobacter species and from the Oxalobacteraceae family was identified in 74% of rotator cuff tendon tissue samples. C acnes DNA was detected in the skin of 1 male patient but not in any other shoulder tissues. CONCLUSION: Our findings indicate the presence of a low-abundance microbiome in the rotator cuff and, potentially, in other shoulder tissues. The absence of C acnes DNA in all shoulder tissues assessed other than the skin is consistent with the hypothesis that C acnes infections are derived from skin contamination during surgery and not from opportunistic expansion of a resident C acnes population in the shoulder joint.


Assuntos
Acinetobacter/isolamento & purificação , DNA Bacteriano/análise , Propionibacterium acnes/isolamento & purificação , RNA Ribossômico 16S/análise , Ombro/microbiologia , Adolescente , Adulto , Idoso , Cartilagem Articular/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Ligamentos Articulares/microbiologia , Microbiota , Pessoa de Meia-Idade , Manguito Rotador/microbiologia , Articulação do Ombro/cirurgia , Pele/microbiologia , Gordura Subcutânea/microbiologia , Adulto Jovem
9.
J Clin Dent ; 27(3): 66-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28390199

RESUMO

OBJECTIVES: Probiotics act as a unique approach to maintaining oral health by supplementing the endogenous oral bacteria with additional naturally occurring beneficial microbes to provide defense against pathogens harmful to teeth and gingiva. The aim of this pilot study was to clinically evaluate the effects of probiotics on plaque accumulation and gingival inflammation in subjects with fixed orthodontics. METHODS: The pilot study was comprised of 15 healthy patients, aged 11 to 18 years, undergoing fixed orthodontic treatment. Patients used an all-natural, dissolving lozenge containing six proprietary probiotic strains (Dentaq® Oral and ENT Health Probiotic Complex)for 28 days. Gingival Index (GI) according to Löe-Silness and Plaque Index (PI) according to Quigley-Hein for all teeth were measured at baseline (Day Zero) and at the end of the probiotic regimen (Day 28). RESULTS: The mean baseline GI and PI scores within each patient decreased by 28.4% and 35.8%, respectively, by Day 28. Patients reported decreased tooth and gingival pain, decreased oral bleeding, and increased motivation to maintain proper oral hygiene over the course of the study. CONCLUSIONS: This pilot study provided preliminary support for the use of Dentaq Oral and ENT Health Probiotic Complex as a safe and effective natural health product for the reduction of plaque accumulation and gingival inflammation. The results demonstrate its potential therapeutic value and open the door for larger scale placebo-controlled clinical studies to verify these findings.


Assuntos
Índice de Placa Dentária , Gengivite/terapia , Probióticos , Adolescente , Criança , Placa Dentária , Feminino , Humanos , Masculino , Índice Periodontal , Projetos Piloto
10.
Appl Environ Microbiol ; 81(15): 4965-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979893

RESUMO

The nutritional status of pregnant women is vital for healthy outcomes and is a concern for a large proportion of the world's population. The role of the microbiota in pregnancy and nutrition is a promising new area of study with potential health ramifications. In many African countries, maternal and infant death and morbidity are associated with malnutrition. Here, we assess the influence of probiotic yogurt containing Lactobacillus rhamnosus GR-1, supplemented with Moringa plant as a source of micronutrients, on the health and oral, gut, vaginal, and milk microbiotas of 56 pregnant women in Tanzania. In an open-label study design, 26 subjects received yogurt daily, and 30 were untreated during the last two trimesters and for 1 month after birth. Samples were analyzed using 16S rRNA gene sequencing, and dietary recalls were recorded. Women initially categorized as nourished or undernourished consumed similar calories and macronutrients, which may explain why there was no difference in the microbiota at any body site. Consumption of yogurt increased the relative abundance of Bifidobacterium and decreased Enterobacteriaceae in the newborn feces but had no effect on the mother's microbiota at any body site. The microbiota of the oral cavity and GI tract remained stable over pregnancy, but the vaginal microbiota showed a significant increase in diversity leading up to and after birth. In summary, daily micronutrient-supplemented probiotic yogurt provides a safe, affordable food for pregnant women in rural Tanzania, and the resultant improvement in the gut microbial profile of infants is worthy of further study.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Dieta/métodos , Microbiota , Moringa , Probióticos/administração & dosagem , Iogurte , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Recém-Nascido , Leite Humano/microbiologia , Dados de Sequência Molecular , Mucosa Bucal/microbiologia , Filogenia , Gravidez , RNA Ribossômico 16S/genética , População Rural , Análise de Sequência de DNA , Tanzânia , Vagina/microbiologia
11.
Bioessays ; 35(6): 508-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23575749

RESUMO

The increased incidence of morbidity and mortality due to Clostridium difficile infection, had led to the emergence of fecal microbial transplantation (FMT) as a highly successful treatment. From this, a 32 strain stool substitute has been derived, and successfully tested in a pilot human study. These approaches could revolutionize not only medical care of infectious diseases, but potentially many other conditions linked to the human microbiome. But a second revolution may be needed in order for regulatory agencies, society and medical practitioners to accept and utilize these interventions, monitor their long term effects, have a degree of control over their use, or at a minimum provide guidelines for donors and recipients.


Assuntos
Enterocolite Pseudomembranosa/terapia , Fezes/microbiologia , Administração Retal , Animais , Farmacorresistência Bacteriana , Humanos , Metagenoma , Propriedade , Probióticos/administração & dosagem
12.
Antimicrob Agents Chemother ; 58(4): 2089-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24449771

RESUMO

Persister cells represent a multidrug-tolerant (MDT), physiologically distinct subpopulation of bacteria. The ability of these organisms to survive lethal antibiotic doses raises concern over their potential role in chronic disease, such as recurrent urinary tract infection (RUTI). Persistence is believed to be conveyed through global metabolic dormancy, which yields organisms unresponsive to external stimuli. However, recent studies have contested this stance. Here, various antibiotics that target different cellular processes were used to dissect the activity of transcription, translation, and peptidoglycan turnover in persister cells. Differential susceptibility patterns were found in type I and type II persisters, and responses differed between Staphylococcus saprophyticus and Escherichia coli uropathogens. Further, SOS-deficient strains were sensitized to ciprofloxacin, suggesting DNA gyrase activity in persisters and indicating the importance of active DNA repair systems for ciprofloxacin tolerance. These results indicate that global dormancy per se cannot sufficiently account for antibiotic tolerance. Rather, the activity of individual cellular processes dictates multidrug tolerance in an antibiotic-specific fashion. Furthermore, the susceptibility patterns of persisters depended on their mechanisms of onset, with subinhibitory antibiotic pretreatments selectively shutting down cognate targets and increasing the persister fraction against the same agent. Interestingly, antibiotics targeting transcription and translation enhanced persistence against multiple agents indirectly related to these processes. Conducting these assays with uropathogenic E. coli isolated from RUTI patients revealed an enriched persister fraction compared to organisms cleared with standard antibiotic therapy. This finding suggests that persister traits are either selected for during prolonged antibiotic treatment or initially contribute to therapy failure.


Assuntos
Antibacterianos/farmacologia , Ampicilina/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus/efeitos dos fármacos
13.
Appl Environ Microbiol ; 80(10): 3007-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610844

RESUMO

In recent years, a greater appreciation for the microbes inhabiting human body sites has emerged. In the female mammary gland, milk has been shown to contain bacterial species, ostensibly reaching the ducts from the skin. We decided to investigate whether there is a microbiome within the mammary tissue. Using 16S rRNA sequencing and culture, we analyzed breast tissue from 81 women with and without cancer in Canada and Ireland. A diverse population of bacteria was detected within tissue collected from sites all around the breast in women aged 18 to 90, not all of whom had a history of lactation. The principal phylum was Proteobacteria. The most abundant taxa in the Canadian samples were Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and Prevotella (5.0%). In the Irish samples the most abundant taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%). None of the subjects had signs or symptoms of infection, but the presence of viable bacteria was confirmed in some samples by culture. The extent to which these organisms play a role in health or disease remains to be determined.


Assuntos
Bactérias/isolamento & purificação , Mama/microbiologia , Microbiota , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Canadá , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-38638595

RESUMO

Background: The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and systemic inflammation are a novel area of research. Methods: A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in bone health and PJI was performed. Results: There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI. Conclusions: Emerging evidence supports the role of the gut microbiota in the development of complications such as aseptic loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal microbial transplantation to moderate the risk of developing these complications. However, further investigation is required. Clinical Relevance: Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.

16.
Gut Microbes ; 16(1): 2350778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717446

RESUMO

Ethanolamine is an abundant compound in the gastrointestinal tract and a valuable source of carbon and nitrogen for pathogenic bacteria harboring ethanolamine utilization (eut) genes. Eut-positive pathogens can consume free ethanolamine to outcompete commensal microbes, which often lack eut genes, and establish infection. Ethanolamine can also act as a host recognition signal for eut-positive pathogens to upregulate virulence genes during colonization. Therefore, reducing free ethanolamine titers may represent a novel approach to preventing infection by eut-positive pathogens. Interestingly, the commensal microorganism Levilactobacillus brevis ATCC 14869 was found to encode over 18 eut genes within its genome. This led us to hypothesize that L. brevis can compete with eut-positive pathogens by clearing free ethanolamine from the environment. Our results demonstrate that despite being unable to metabolize ethanolamine under most conditions, L. brevis ATCC 14869 responds to the compound by increasing the expression of genes encoding proteins involved in microcompartment formation and adhesion to the intestinal epithelial barrier. The improved intestinal adhesion of L. brevis in the presence of ethanolamine also enhanced the exclusion of eut-positive pathogens from adhering to intestinal epithelial cells. These findings support further studies to test whether L. brevis ATCC 14869 can counter enteric pathogens and prevent or reduce the severity of infections. Overall, the metabolic capabilities of L. brevis ATCC 14869 offer a unique opportunity to add to the armamentarium of antimicrobial therapies as well as our understanding of the mechanisms used by beneficial microbes to sense and adapt to host microenvironments.


Assuntos
Aderência Bacteriana , Etanolamina , Regulação Bacteriana da Expressão Gênica , Levilactobacillus brevis , Etanolamina/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Animais , Virulência/genética
17.
Trends Mol Med ; 30(3): 209-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195358

RESUMO

Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Humanos , Transplante de Microbiota Fecal , Infecções por Clostridium/terapia , Resultado do Tratamento
18.
Appl Environ Microbiol ; 79(6): 1835-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315732

RESUMO

Menstrual toxic shock syndrome (TSS) is a serious illness that afflicts women of premenopausal age worldwide and arises from vaginal infection by Staphylococcus aureus and concurrent production of toxic shock syndrome toxin-1 (TSST-1). Studies have illustrated the capacity of lactobacilli to reduce S. aureus virulence, including the capacity to suppress TSST-1. We hypothesized that an aberrant microbiota characteristic of pathogenic bacteria would induce the increased production of TSST-1 and that this might represent a risk factor for the development of TSS. A S. aureus TSST-1 reporter strain was grown in the presence of vaginal swab contents collected from women with a clinically healthy vaginal status, women with an intermediate status, and those diagnosed with bacterial vaginosis (BV). Bacterial supernatant challenge assays were also performed to test the effects of aerobic vaginitis (AV)-associated pathogens toward TSST-1 production. While clinical samples from healthy and BV women suppressed toxin production, in vitro studies demonstrated that Streptococcus agalactiae and Enterococcus spp. significantly induced TSST-1 production, while some Lactobacillus spp. suppressed it. The findings suggest that women colonized by S. aureus and with AV, but not BV, may be more susceptible to menstrual TSS and would most benefit from prophylactic treatment.


Assuntos
Toxinas Bacterianas/biossíntese , Enterotoxinas/biossíntese , Metagenoma , Interações Microbianas , Staphylococcus aureus/metabolismo , Superantígenos/biossíntese , Vagina/microbiologia , Enterococcus/fisiologia , Feminino , Humanos , Lactobacillus/fisiologia , Streptococcus agalactiae/fisiologia , Vaginose Bacteriana/microbiologia
19.
Curr Rheumatol Rep ; 15(3): 314, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23378145

RESUMO

There is a growing understanding of the mechanisms by which the influence of the microbiota projects beyond sites of primary mucosal occupation to other human body systems. Bacteria present in the intestinal tract exert a profound effect on the host immune system, both locally and at distant sites. The oral cavity has its own characteristic microbiota, which concentrates in periodontal tissues and is in close association with a permeable epithelium. In this review we examine evidence which supports a role for the microbiome in the aetiology of rheumatic disease. We also discuss how changes in the composition of the microbiota, particularly within the gastrointestinal tract, may be affected by genetics, diet, and use of antimicrobial agents. Evidence is presented to support the theory that an altered microbiota is a factor in the initiation and perpetuation of inflammatory diseases, including rheumatoid arthritis (RA), spondyloarthritis (SpA), and inflammatory bowel disease (IBD). Mechanisms through which the microbiota may be involved in the pathogenesis of these diseases include altered epithelial and mucosal permeability, loss of immune tolerance to components of the indigenous microbiota, and trafficking of both activated immune cells and antigenic material to the joints. The potential to manipulate the microbiome, by application of probiotics and faecal microbial transplant (FMT), is now being investigated. Both approaches are in their infancy with regard to management of rheumatic disease but their potential is worthy of consideration, given the need for novel therapeutic approaches, and the emerging recognition of the importance of microbial interactions with human hosts.


Assuntos
Metagenoma/fisiologia , Doenças Reumáticas/microbiologia , Antibacterianos/farmacologia , Dieta , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Tolerância Imunológica , Metagenoma/efeitos dos fármacos , Boca/microbiologia , Obesidade , Probióticos/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/genética , Doenças Reumáticas/imunologia
20.
Cancers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831641

RESUMO

Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA