Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Rob Res ; 31(9): 1081-1093, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23750066

RESUMO

Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal microelectromechanical system (MEMS) fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. The effectiveness of the approach is demonstrated through ex vivo and in vivo experiments.

2.
Rep U S ; 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24232193

RESUMO

Surgical robots are gaining favor in part due to their capacity to reach remote locations within the body. Continuum robots are especially well suited for accessing deep spaces such as cerebral ventricles within the brain. Due to the entry point constraints and complicated structure, current techniques do not allow surgeons to access the full volume of the ventricles. The ability to access the ventricles with a dexterous robot would have significant clinical implications. This paper presents a concentric tube manipulator mated to a robotically controlled flexible endoscope. The device adds three degrees of freedom to the standard neuroendoscope and roboticizes the entire package allowing the operator to conveniently manipulate the device. To demonstrate the improved functionality, we use an in-silica virtual model as well as an ex-vivo anatomic model of a patient with a treatable form of hydrocephalus. In these experiments we demonstrate that the augmented and roboticized endoscope can efficiently reach critical regions that a manual scope cannot.

3.
IEEE Int Conf Robot Autom ; 2011: 411-416, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22229109

RESUMO

Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal MEMS fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. Experimental results demonstrate device efficacy through manual in-vivo deployment and bench-top robotic deployment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA