Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Immunol ; 22(1): 67-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169014

RESUMO

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Assuntos
COVID-19/imunologia , Citocinas/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , COVID-19/metabolismo , COVID-19/virologia , Criança , Citocinas/metabolismo , Feminino , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Interleucina-6 , Masculino , Pessoa de Meia-Idade , Receptores de IgG/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
2.
JAMA Netw Open ; 4(9): e2125524, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533570

RESUMO

Importance: As of May 2021, more than 32 million cases of COVID-19 have been confirmed in the United States, resulting in more than 615 000 deaths. Anaphylactic reactions associated with the Food and Drug Administration (FDA)-authorized mRNA COVID-19 vaccines have been reported. Objective: To characterize the immunologic mechanisms underlying allergic reactions to these vaccines. Design, Setting, and Participants: This case series included 22 patients with suspected allergic reactions to mRNA COVID-19 vaccines between December 18, 2020, and January 27, 2021, at a large regional health care network. Participants were individuals who received at least 1 of the following International Statistical Classification of Diseases and Related Health Problems, Tenth Revision anaphylaxis codes: T78.2XXA, T80.52XA, T78.2XXD, or E949.9, with documentation of COVID-19 vaccination. Suspected allergy cases were identified and invited for follow-up allergy testing. Exposures: FDA-authorized mRNA COVID-19 vaccines. Main Outcomes and Measures: Allergic reactions were graded using standard definitions, including Brighton criteria. Skin prick testing was conducted to polyethylene glycol (PEG) and polysorbate 80 (P80). Histamine (1 mg/mL) and filtered saline (negative control) were used for internal validation. Basophil activation testing after stimulation for 30 minutes at 37 °C was also conducted. Concentrations of immunoglobulin (Ig) G and IgE antibodies to PEG were obtained to determine possible mechanisms. Results: Of 22 patients (20 [91%] women; mean [SD] age, 40.9 [10.3] years; 15 [68%] with clinical allergy history), 17 (77%) met Brighton anaphylaxis criteria. All reactions fully resolved. Of patients who underwent skin prick tests, 0 of 11 tested positive to PEG, 0 of 11 tested positive to P80, and 1 of 10 (10%) tested positive to the same brand of mRNA vaccine used to vaccinate that individual. Among these same participants, 10 of 11 (91%) had positive basophil activation test results to PEG and 11 of 11 (100%) had positive basophil activation test results to their administered mRNA vaccine. No PEG IgE was detected; instead, PEG IgG was found in tested individuals who had an allergy to the vaccine. Conclusions and Relevance: Based on this case series, women and those with a history of allergic reactions appear at have an elevated risk of mRNA vaccine allergy. Immunological testing suggests non-IgE-mediated immune responses to PEG may be responsible in most individuals.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Hipersensibilidade/diagnóstico , Adolescente , Adulto , Idoso , Vacinas contra COVID-19/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Hipersensibilidade/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estados Unidos/epidemiologia , United States Food and Drug Administration/organização & administração , United States Food and Drug Administration/estatística & dados numéricos , Vacinação/efeitos adversos
3.
Cell Host Microbe ; 29(12): 1738-1743.e4, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34861167

RESUMO

Different SARS-CoV-2 vaccines are approved in various countries, but few direct comparisons of the antibody responses they stimulate have been reported. We collected plasma specimens in July 2021 from 196 Mongolian participants fully vaccinated with one of four COVID-19 vaccines: Pfizer/BioNTech, AstraZeneca, Sputnik V, and Sinopharm. Functional antibody testing with a panel of nine SARS-CoV-2 viral variant receptor binding domain (RBD) proteins revealed marked differences in vaccine responses, with low antibody levels and RBD-ACE2 blocking activity stimulated by the Sinopharm and Sputnik V vaccines in comparison to the AstraZeneca or Pfizer/BioNTech vaccines. The Alpha variant caused 97% of infections in Mongolia in June and early July 2021. Individuals who recover from SARS-CoV-2 infection after vaccination achieve high antibody titers in most cases. These data suggest that public health interventions such as vaccine boosting, potentially with more potent vaccine types, may be needed to control COVID-19 in Mongolia and worldwide.


Assuntos
Anticorpos Antivirais/sangue , Vacina BNT162/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/administração & dosagem , Vacinação em Massa , SARS-CoV-2/efeitos dos fármacos , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Antivirais/biossíntese , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Expressão Gênica , Humanos , Soros Imunes/química , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Mongólia/epidemiologia , Estudos Retrospectivos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
4.
medRxiv ; 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511463

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause Coronavirus Disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that severe COVID-19 patients produced a unique serologic signature, including increased IgG1 with afucosylated Fc glycans. This Fc modification on SARS-CoV-2 IgGs enhanced interactions with the activating FcγR, FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including IL-6 and TNF. These results show that disease severity in COVID-19 correlates with the presence of afucosylated IgG1, a pro-inflammatory IgG Fc modification.

5.
Hepatol Commun ; 1(10): 1070-1084, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29404443

RESUMO

The clinical presentation of alcoholic hepatitis (AH) can be mimicked by other alcoholic liver diseases. The aim of this study was to identify clinical features that predict AH on liver biopsy. Biopsies from patients hospitalized for presumed severe AH were used to identify a derivation cohort (101 patients) and validation cohort (71 patients). Using histologic scores for hepatocyte ballooning, Mallory-Denk bodies, and lobular inflammation, 95 patient biopsies (55%) were classified as definite AH, 55 (32%) as possible AH, and 22 (13%) as no AH. Survival was similar among the groups, but mortality was significantly increased for patients with fatty change ≤50% on initial liver biopsy. An analysis limited to uninfected patients with definite AH or no AH in the derivation cohort identified a greater leukocyte count at admission and radiographic evidence of liver surface nodularity as independent predictors of definite AH on biopsy (P < 0.05). In the derivation cohort, the leukocyte count thresholds for ensuring 100% specificity for diagnosing definite AH were 10 × 109/L if the liver surface was nodular and 14 × 109/L if the liver surface was smooth, with a sensitivity of 76% and an area under the receiver operator characteristic curve of 0.88. In the validation cohort, these thresholds had a specificity of 86%, a sensitivity of 59%, and an area under the receiver operator characteristic curve of 0.72. Conclusion: The combination of an elevated leukocyte count and a nodular liver surface in the absence of active infection retrospectively identified patients with a high likelihood of histologic AH for whom liver biopsy may not be necessary. For patients with suspected severe AH who do not fulfill these criteria, liver biopsy is important to exclude other variants of alcoholic liver disease. (Hepatology Communications 2017;1:1070-1084).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA