Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 25(19): 4951-4964, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30762275

RESUMO

The swelling of resins (Merrifield and HypoGel 200) in mixtures of two solvents was generally found not to vary linearly with the relative amount of each solvent in the mixture. Hansen solubility parameter (HSP) space could be used to define high, medium and low swelling regions for each resin. The variation of resin swelling with binary solvent composition could then be explained based on the HSP parameters of the two solvents and the way in which the line connecting the points corresponding to the two pure solvents bisected the swelling region for the resin. The applicability of the methodology was demonstrated by showing that an appropriate mixture of two green solvents was more effective for solid-phase peptide synthesis on Merrifield resin than use of either individual solvent and could completely replace the use of traditional polar aprotic and chlorinated solvents for this application. It was also shown that the high resin swelling area of Merrifield resin can be used to predict mixtures of green solvents that will dissolve linear, unfunctionalised polystyrene.

2.
Faraday Discuss ; 202: 157-173, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28661518

RESUMO

Many traditional solvents have drawbacks including sustainability and toxicity issues. Legislation, such as REACH, is driving the move towards less hazardous chemicals and production processes. Therefore, safer bio-based solvents need to be developed. Herein, a 10 step method has been proposed for the development of new bio-based solvents, which utilises a combination of in silico modelling of Hansen solubility parameters (HSPs), experimental Kamlet-Abboud-Taft parameters, a selection of green synthetic routes followed by application testing and toxicity measurements. The challenges that the chemical industry face in the development of new bio-based solvents are highlighted through a case study on methyl(2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate (MMC), which can be synthesised from glycerol. Although MMC is an attractive candidate as a replacement solvent, simply being bio-derived is not enough for a molecule to be regarded as green. The methodology of solvent development described here is a broadly applicable protocol that will indicate if a new bio-based solvent is functionally proficient, and will also highlight the importance of early stage Kamlet-Abboud-Taft parameters determination and toxicity testing in the development of a green solvent.


Assuntos
Formiatos/síntese química , Formiatos/química , Estrutura Molecular , Solventes/síntese química , Solventes/química
3.
Green Chem ; 23(14): 5043-5048, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34354544

RESUMO

Following the environmental problems caused by non-degradable plastics there is a need to synthesise greener and more sustainable polymers. In this work we describe, for the first time, the facile enzyme-catalysed synthesis of linear polyesters using dimethyl malonate as the diester. These polymers, containing a different aliphatic diol component (C4, C6 or C8), were synthesised in solventless conditions using immobilized Candida antarctica lipase B as the biocatalyst. The potential of enzymes for catalysing this reaction is compared with the unsuccessful antimony- and titanium-catalysed synthesis (T > 150 °C). The application of the synthesized polymers as effective metal chelators in biphasic, green solvent systems was also described, together with the characterisation of the synthesised materials.

4.
RSC Adv ; 11(62): 39412-39419, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492443

RESUMO

Methylation of acetoin with dimethyl carbonate was performed in a sustainable one-step process, with improved process mass intensity (PMI) and atom economy compared to previously published methods. The resulting product, 3-methoxybutan-2-one (MO) was successfully evaluated as a bio-based solvent, while both Kamlet-Taft solvatochromic parameters and Hansen solubility parameters demonstrate its potential viability in the substitution of chlorinated solvents. MO exhibited a low peroxide forming potential and a negative Ames mutagenicity test and was successfully used as a solvent in a Friedel-Crafts acylation (79% yield compared to 77% in dichloromethane) and for N-alkylations. MO is a renewable oxygenated solvent, with the potential ability to substitute carcinogenic halogenated solvents in some applications.

5.
Materials (Basel) ; 13(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941019

RESUMO

The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique, in most cases only short oligoesters are obtained, with limited practical applications or requiring further chemical processing for their elongation. In this work, we present a catalyst-free thermal upgrade of enzymatically synthesized oligoesters. Different aliphatic and aromatic oligoesters were synthesized using immobilized Candida antarctica lipase B (iCaLB) as the catalyst (70 °C, 24 h) yielding poly(1,4-butylene adipate) (PBA, Mw = 2200), poly(1,4-butylene isophthalate) (PBI, Mw = 1000), poly(1,4-butylene 2,5-furandicarboxylate) (PBF, Mw = 600), and poly(1,4-butylene 2,4-pyridinedicarboxylate) (PBP, Mw = 1000). These polyesters were successfully thermally treated to obtain an increase in Mw of 8.5, 2.6, 3.3, and 2.7 folds, respectively. This investigation focused on the most successful upgrade, poly(1,4-butylene adipate), then discussed the possible effect of di-ester monomers as compared to di-acids in the thermally driven polycondensation. The herein-described two-step synthesis method represents a practical and cost-effective way to synthesize higher-molecular-weight polymers without the use of toxic metal catalysts such as titanium(IV) tert-butoxide, tin(II) 2-ethylhexanoate, and in particular, antimony(IV) oxide. At the same time, the method allows for the extension of the number of reuses of the biocatalyst by preventing its exposure to extreme denaturating conditions.

6.
ChemSusChem ; 13(12): 3212-3221, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220058

RESUMO

Three dipolar aprotic solvents were designed to possess high dipolarity and low toxicity: N,N,N',N'-tetrabutylsuccindiamide (TBSA), N,N'-diethyl-N,N'-dibutylsuccindiamide (EBSA), and N,N'-dimethyl-N,N'-dibutylsuccindiamide (MBSA). They were synthesized catalytically by using a K60 silica catalyst in a solventless system. Their water immiscibility stands out as an unusual and useful property for dipolar aprotic solvents. They were tested in a model Heck reaction, metal-organic framework syntheses, and a selection of polymer solubility experiments in which their performances were found to be comparable to traditional solvents. Furthermore, MBSA was found to be suitable for the production of an industrially relevant membrane from polyethersulfone. An integrated approach involving in silico analysis based on available experimental information, prediction model outcomes and read across data, as well as a panel of in vitro reporter gene assays covering a broad range of toxicological endpoints was used to assess toxicity. These in silico and in vitro tests suggested no alarming indications of toxicity in the new solvents.

7.
RSC Adv ; 9(7): 3542-3549, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518071

RESUMO

Bio-derived lipophilic polydentate chelators have been synthesized and tested for their chelating ability using a range of metal salts of Cu, Co, Ni, Fe, and Cr. These novel molecules were produced by the Michael addition reaction of 14,16-hentriacontanedione, isolated from wheat straw wax, with methyl acrylate or bio-derived dimethyl itaconate via microwave heating. The Michael adducts could either be used directly as esters or be hydrolysed to their acid form. Critically, the creation of additional binding sites via the carboxylate moieties leads to an enhanced metal uptake over both a non-renewable commercially available lipophilic ß-diketone (dibenzoylmethane) and the unmodified hentriacontane-14,16-dione, for the chelation of Fe(iii), Cr(iii) and Ni(ii). The modified ß-diketone containing a single carboxylic acid functionality was able to extract 167 mg L-1 of Fe(iii) from an FeCl3 solution with no pH adjustment. In comparison, no chelation was observed with dibenzoylmethane, while unmodified hentriacontane-14,16-dione was able to extract 81 mg L-1. The modified chelators containing one and two ester carboxylates extracted 255 and 305 mg L-1 Cr(iii) from a solution of CrCl3 at pH 5-6, 238 mg L-1 was extracted by the unmodified ß-diketone whilst no extraction was observed using dibenzoylmethane. This suggest some minor contribution or positive effect to chelation due to neighbouring ester groups. The chelator containing two carboxylic acid groups (tetra-dentate when combined with the diketone) was the most proficient in this study for removal of Ni from an NiCl2 solution (140 mg L-1). It was also found that at higher pH almost quantitative extraction was achieved using the polydentate chelators.

8.
Green Chem ; 21(7): 1686-1694, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31303861

RESUMO

With increased awareness of environmental issues caused by traditional petrochemical processes, both academia and industry are making enormous efforts towards the development of sustainable practices using renewable biomass as a feedstock. In this work, the biocatalyzed synthesis of polyesters derived from renewable monomers was performed in safer, bio-derivable organic solvents. Candida antarctica lipase B (CaLB), an enzyme belonging to the Ser-hydrolase family (adsorbed on methacrylic resin, also known as Novozym 435) was tested for its performance in the synthesis of adipate- and furandicarboxylate-based polyesters. In addition, the traditional solvents toluene and tetrahydrofuran were compared with a series of green solvents, 2,2,5,5-tetramethyloxolane, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran and pinacolone for the enzymatic polymerizations. We can conclude that the monomer conversions and molecular masses of the obtained polyesters in all the tested alternative solvents were suitable, and in some cases superior, with CaLB immobilized via physisorption on acrylic resin being the optimal biocatalyst for all reactions. Strikingly, it was found that for the majority of the new solvents, lower reaction temperatures gave comparable monomer conversions and polymers with similar molecular weights whilst pinacolone yielded better polymers with M n > 2000 Da and conversions of over 80%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA