Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Bioinformatics ; 23(1): 551, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536300

RESUMO

BACKGROUND: The genomes of SARS-CoV-2 are classified into variants, some of which are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant B.1.1.529). Proportions of these variants circulating in a human population are typically estimated by large-scale sequencing of individual patient samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alternative, but requires methods for estimating variant proportions in a mixed sample. RESULTS: We propose a new method based on a probabilistic model of sequencing reads, capturing sequence diversity present within individual variants, as well as sequencing errors. The algorithm is implemented in an open source Python program called VirPool. We evaluate the accuracy of VirPool on several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms, including wastewater samples from Austria and France monitoring the onset of the Alpha variant. CONCLUSIONS: VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative positions, and can also capture haplotype dependencies within a single read.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , RNA Viral , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia
2.
Virus Genes ; 57(6): 556-560, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34448987

RESUMO

SARS-CoV-2 mutants carrying the ∆H69/∆V70 deletion in the amino-terminal domain of the Spike protein emerged independently in at least six lineages of the virus (namely, B.1.1.7, B.1.1.298, B.1.160, B.1.177, B.1.258, B.1.375). We analyzed SARS-CoV-2 samples collected from various regions of Slovakia between November and December 2020 that were presumed to contain B.1.1.7 variant due to drop-out of the Spike gene target in an RT-qPCR test caused by this deletion. Sequencing of these samples revealed that although in some cases the samples were indeed confirmed as B.1.1.7, a substantial fraction of samples contained another ∆H69/∆V70 carrying mutant belonging to the lineage B.1.258, which has been circulating in Central Europe since August 2020, long before the import of B.1.1.7. Phylogenetic analysis shows that the early sublineage of B.1.258 acquired the N439K substitution in the receptor-binding domain (RBD) of the Spike protein and, later on, also the deletion ∆H69/∆V70 in the Spike N-terminal domain (NTD). This variant was particularly common in several European countries including the Czech Republic and Slovakia but has been quickly replaced by B.1.1.7 early in 2021.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Europa (Continente)/epidemiologia , Humanos , SARS-CoV-2/classificação , Fatores de Tempo
3.
Euro Surveill ; 26(19)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33988125

RESUMO

BackgroundDespite the known circulation of West Nile virus (WNV) and Usutu virus (USUV) in Slovakia, no formal entomological surveillance programme has been established there thus far.AimTo conduct contemporaneous surveillance of WNV and USUV in different areas of Slovakia and to assess the geographical spread of these viruses through mosquito vectors. The first autochthonous human WNV infection in the country is also described.MethodsMosquitoes were trapped in four Slovak territorial units in 2018 and 2019. Species were characterised morphologically and mosquito pools screened for WNV and USUV by real-time reverse-transcription PCRs. In pools with any of the two viruses detected, presence of pipiens complex group mosquitoes was verified using molecular approaches.ResultsAltogether, 421 pools containing in total 4,508 mosquitoes were screened. Three pools tested positive for WNV and 16 for USUV. USUV was more prevalent than WNV, with a broader spectrum of vectors and was detected over a longer period (June-October vs August for WNV). The main vectors of both viruses were Culex pipiens sensu lato. Importantly, WNV and USUV were identified in a highly urbanised area of Bratislava city, Slovakias' capital city. Moreover, in early September 2019, a patient, who had been bitten by mosquitoes in south-western Slovakia and who had not travelled abroad, was laboratory-confirmed with WNV infection.ConclusionThe entomological survey results and case report increase current understanding of the WNV and USUV situation in Slovakia. They underline the importance of vector surveillance to assess public health risks posed by these viruses.


Assuntos
Culex , Culicidae , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Flavivirus/genética , Humanos , Eslováquia/epidemiologia , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/genética
4.
Parasitol Res ; 119(8): 2713-2717, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506253

RESUMO

Here, we provide the first mass molecular screening of medically important mosquitoes for Bartonella species using multiple genetic markers. We examined a total of 72,115 mosquito specimens, morphologically attributed to Aedes vexans (61,050 individuals), Culex pipiens (10,484 individuals) and species of the Anopheles maculipennis complex (581 individuals) for Bartonella spp. The initial screening yielded 63 Bartonella-positive A. vexans mosquitoes (mean prevalence 0.1%), 34 Bartonella-positive C. pipiens mosquitoes (mean prevalence 0.3%) and 158 Bartonella-positive A. maculipennis group mosquitoes (mean prevalence 27.2%). Several different Bartonella ITS sequences were recovered. This study highlights the need for molecular screening of mosquitoes, the most important vectors of arthropod-borne pathogens, for potential bacterial agents.


Assuntos
Infecções por Bartonella/transmissão , Bartonella/isolamento & purificação , Culicidae/microbiologia , Mosquitos Vetores/microbiologia , Animais , Bartonella/classificação , Bartonella/genética , Infecções por Bartonella/epidemiologia , Culicidae/classificação , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Genes Bacterianos/genética , Mosquitos Vetores/classificação
5.
Parasitol Res ; 117(2): 521-530, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29297093

RESUMO

Over a period of intervening years, the distribution of two canine cardiopulmonary metastrongylid nematodes, Angiostrongylus vasorum and Crenosoma vulpis, has been recognised in Central Europe. Here, we report the first epidemiological research conducted in red foxes from Slovakia and the potential influence of selected environmental variables on the parasites' occurrence, quantified by logistic regression. The environmental models revealed that distribution of C. vulpis is not significantly influenced by any environmental variables, and the parasite is present in the whole area under study. Models for A. vasorum revealed some weak influence of environmental variables, as it tends to occur in drier areas with lower proportion of forest. Moreover, A. vasorum shows a typical spatial clustering and occurs in endemic foci identified mainly in the eastern part of Slovakia. A cluster of A. vasorum infection foci was also found in the north-eastern region, where the average winter air temperature regularly falls below - 10 °C.


Assuntos
Angiostrongylus/isolamento & purificação , Doenças do Cão/epidemiologia , Raposas/parasitologia , Metastrongyloidea/isolamento & purificação , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/veterinária , Animais , Doenças do Cão/parasitologia , Cães , Estudos Epidemiológicos , Sistemas de Informação Geográfica , Coração/parasitologia , Estações do Ano , Eslováquia/epidemiologia , Infecções por Strongylida/parasitologia , Temperatura
6.
Parasitol Res ; 117(7): 2347-2350, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29774422

RESUMO

Until recently Dirofilaria immitis, the causative agent of serious canine heartworm disease, has been detected relatively infrequently in Central Europe in comparison with the predominant D. repens species. In the present study, the elevated number of heartworm cases among dogs from a breeding establishment in south-western Slovakia is described. Out of 25 dogs examined, dirofilariasis was detected by single or several diagnostic approaches in 18 animals, which represents a mean prevalence of 72.0%. D. immitis was confirmed in 16 (64.0%) of the infected dogs and D. repens in 8 dogs (32.0%). All cases of D. immitis infection were detected in areas regarded as D. repens-endemic to date. Following the presented results and discussed circumstances, the question of whether the real prevalence of canine heartworm disease in Slovakia, or even in Central Europe as a whole, has been underestimated, or if D. immitis is currently becoming endemic in this area.


Assuntos
Dirofilaria immitis/isolamento & purificação , Dirofilariose/epidemiologia , Doenças do Cão/epidemiologia , Animais , Dirofilariose/parasitologia , Doenças do Cão/parasitologia , Cães , Feminino , Masculino , Prevalência , Eslováquia/epidemiologia
7.
Parasitol Res ; 117(1): 315-321, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29119308

RESUMO

We report the distribution of mosquitoes of the maculipennis complex in two distinct areas of the Czech Republic (Bohemia and South Moravia) and in one locality of neighbouring Slovakia with emphasis on the detection of the newly described cryptic species Anopheles daciae (Linton, Nicolescu & Harbach, 2004). A total of 691 mosquitoes were analysed using a species-specific multiplex PCR assay to differentiate between the members of the maculipennis complex. In the Czech Republic, we found Anopheles maculipennis (with a prevalence rate of 1.4%), Anopheles messeae (49.0%) and Anopheles daciae (49.6%). In Slovakia, only An. messeae (52.1%) and An. daciae (47.9%) were detected. In this study, An. daciae was documented for the first time in the two countries where it represented a markedly higher proportion of maculipennis complex species (with an overall prevalence almost reaching 50%) in comparison to previous reports from Germany, Romania and Poland. The determination of the differential distribution of maculipennis complex species will contribute to assessing risks of mosquito-borne diseases such as malaria or dirofilariasis.


Assuntos
Anopheles/parasitologia , Culicidae/parasitologia , Dirofilariose/transmissão , Insetos Vetores/parasitologia , Malária/transmissão , Animais , República Tcheca/epidemiologia , Dirofilariose/epidemiologia , Dirofilariose/parasitologia , Feminino , Malária/epidemiologia , Malária/parasitologia , Eslováquia/epidemiologia , Especificidade da Espécie
8.
Parasitol Res ; 115(6): 2389-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27021185

RESUMO

The study presents the comprehensive results of a detailed epidemiological study on canine dirofilariosis in Slovakia, Central Europe. More than 4000 dogs were investigated, and several epidemiological factors were considered. The mean prevalence in individual regions ranged from 2.0 % in northern Slovakia to more than 25.0 % in the south-western part of the country, with the nematode Dirofilaria repens confirmed as the dominant causative agent. Canine dirofilariosis occurred more often in animals more than 3 years old and in dogs of large and giant breed sizes. Short-haired animals were infected more often than dogs with a long coat. Also, the infection was significantly more prevalent in animals kept in rural areas in comparison with urban environments.Counts of microfilariae (mf) in peripheral blood reached their highest levels in May and August and corresponded to activity peaks and population maximums of potential vectors, the mosquito species Aedes vexans and Culex pipiens, the two most prevalent species in Slovakia. Moreover, two dogs naturally infested with D. repens were included in the experiment in order to monitor daily microfilarial periodicity. This fluctuation showed the same tendency in both animals, with a peak of circulating mf recorded at 4 a.m. and minimal mf counts at 4 p.m.


Assuntos
Aedes/parasitologia , Culex/parasitologia , Dirofilaria repens/isolamento & purificação , Dirofilariose/epidemiologia , Doenças do Cão/epidemiologia , Animais , Dirofilariose/parasitologia , Doenças do Cão/parasitologia , Cães , Doenças Endêmicas/veterinária , Estudos Epidemiológicos , Feminino , Masculino , Microfilárias , Prevalência , Eslováquia/epidemiologia
9.
Viruses ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851580

RESUMO

Viral infections caused by viruses from the family Flaviviridae such as Zika (ZIKV), Dengue (DENV), yellow fever (YFV), tick-borne encephalitis (TBEV), West Nile (WNV), and Usutu (USUV) are some of the most challenging diseases for recognition in clinical diagnostics and epidemiological tracking thanks to their short viremia, non-specific symptoms, and high cross-reactivity observed in laboratory techniques. In Central Europe, the most relevant endemic flaviviruses are mosquito-borne WNV and USUV, and tick-borne TBEV. All three viruses have been recognised to be responsible for human neuroinvasive diseases. Moreover, they are interrupting the blood and transplantation safety processes, when the great efforts made to save a patient's life could be defeated by acquired infection from donors. Due to the trend of changing distribution and abundance of flaviviruses and their vectors influenced by global change, the co-circulation of WNV, USUV, and TBEV can be observed in the same area. In this perspective, we discuss the problems of flavivirus diagnostics and epidemiology monitoring in Slovakia as a model area of Central Europe, where co-circulation of WNV, USUV, and TBEV in the same zone has been recently detected. This new situation presents multiple challenges not only for diagnostics or surveillance but particularly also for blood and organ safety. We conclude that the current routinely used laboratory diagnostics and donor screening applied by the European Union (EU) regulations are out of date and the novel methods which have become available in recent years, e.g., next-gene sequencing or urine screening should be implemented immediately.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Encefalite Viral , Infecção por Zika virus , Zika virus , Animais , Humanos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Mosquitos Vetores , Viremia , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle
10.
Commun Biol ; 6(1): 233, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864129

RESUMO

Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators. We make important strides in improving RT-LAMP sensitivity by establishing principles for using LNA-modified LAMP primers, multiplexing, and conducting extensive optimizations of reaction parameters. To enable point-of-care testing, we introduce a rapid sample inactivation procedure without RNA extraction that is compatible with self-collected, non-invasive gargle samples. Our quadruplexed assay (targeting E, N, ORF1a, and RdRP) reliably detects 1 RNA copy/µl of sample (=8 copies/reaction) from extracted RNA and 2 RNA copies/µl of sample (=16 copies/reaction) directly from gargle samples, making it one of the most sensitive RT-LAMP tests and even comparable to RT-qPCR. Additionally, we demonstrate a self-contained, mobile version of our assay in a variety of high-throughput field testing scenarios on nearly 9,000 crude gargle samples. Vivid COVID-19 LAMP can be an important asset for the endemic phase of COVID-19 as well as preparing for future pandemics.


Assuntos
COVID-19 , Zinco , Humanos , Colorimetria , COVID-19/diagnóstico , SARS-CoV-2/genética , Primers do DNA , Íons
11.
Parasitol Int ; 87: 102495, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34737070

RESUMO

Spirurid nematode Thelazia callipaeda, transmitted by the fruit fly Phortica variegata, is a causative agent of an ocular parasitic disease called also canine thelaziosis. Dogs, cats, and wild canids are considered the primary definitive hosts for the parasite, but humans may also serve as aberrant definitive hosts. For long decades the geographic range of T. callipaeda was strictly limited to the territory of Asia, but after the year 2000, the parasite began to spread rapidly through Europe. The first autochthonous infections of dogs and foxes in Slovakia were recorded in 2016. In the present study, the results of a whole-area surveillance for canine thelaziosis are reported. Altogether, 142 cases of infection caused by T. callipaeda were diagnosed by veterinarians in dogs between 2016 and the first quarter of 2021, and two cases of feline thelaziosis were recorded. The majority of the dogs showed mild ocular signs manifested by conjunctivitis; 8.5% of them suffered from more serious mucopurulent discharge, and in two dogs corneal ulceration was recorded. The screening revealed increasing trends in the occurrence of canine thelaziosis from both a temporal and spatial point of view and unambiguously confirms the endemic status of T. callipaeda in Slovakia with the prospect of its further expansion.


Assuntos
Doenças do Gato/parasitologia , Doenças do Cão/parasitologia , Infecções Oculares Parasitárias/veterinária , Infecções por Spirurida/veterinária , Thelazioidea/isolamento & purificação , Animais , Doenças do Gato/epidemiologia , Gatos , Doenças do Cão/epidemiologia , Cães , Infecções Oculares Parasitárias/epidemiologia , Infecções Oculares Parasitárias/parasitologia , Feminino , Masculino , Eslováquia/epidemiologia , Infecções por Spirurida/epidemiologia , Infecções por Spirurida/parasitologia , Thelazioidea/classificação
12.
Microb Biotechnol ; 15(7): 1995-2021, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35316574

RESUMO

Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Influenza Humana/diagnóstico , Nucleotídeos , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade , Tecnologia
13.
GigaByte ; 2022: gigabyte57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824512

RESUMO

Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named "AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108". AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species.

14.
EBioMedicine ; 76: 103818, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078012

RESUMO

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Deriva e Deslocamento Antigênicos , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/patologia , Camundongos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
15.
Parasit Vectors ; 14(1): 572, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772447

RESUMO

BACKGROUND: Invasive mosquitoes of the genus Aedes are quickly spreading around the world. The presence of these alien species is concerning for both their impact on the native biodiversity and their high vector competence. The surveillance of Aedes invasive mosquito (AIM) species is one of the most important steps in vector-borne disease control and prevention. METHODS: In 2020, the monitoring of AIM species was conducted in five areas (Bratislava, Zvolen, Banská Bystrica, Presov, Kosice) of Slovakia. The sites were located at points of entry (border crossings with Austria and Hungary) and in the urban and rural zones of cities and their surroundings. Ovitraps were used at the majority of sites as a standard method of monitoring. The collected specimens were identified morphologically, with subsequent molecular identification by conventional PCR (cox1) and Sanger sequencing. The phylogenetic relatedness of the obtained sequences was inferred by the maximum likelihood (ML) method. The nucleotide heterogeneity of the Slovak sequences was analysed by the index of disparity. RESULTS: A bush mosquito, Aedes japonicus japonicus, was found and confirmed by molecular methods in three geographically distant areas of Slovakia-Bratislava, Zvolen and Presov. The presence of AIM species is also likely in Kosice; however, the material was not subjected to molecular identification. The nucleotide sequences of some Slovak strains confirm their significant heterogeneity. They were placed in several clusters on the ML phylogenetic tree. Moreover, Ae. j. japonicus was discovered in regions of Slovakia that are not close to a point of entry, where the mosquitoes could find favourable habitats in dendrothelms in city parks or forests. CONCLUSION: Despite being a first record of the Ae. j. japonicus in Slovakia, our study indicates that the established populations already exist across the country, underlining the urgent need for intensified surveillance of AIM species as well as mosquito-borne pathogens.


Assuntos
Aedes/classificação , Mosquitos Vetores/classificação , Aedes/genética , Aedes/fisiologia , Distribuição Animal , Animais , Áustria , Feminino , Hungria , Espécies Introduzidas , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Filogenia , Eslováquia
16.
PLoS One ; 16(10): e0259277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714886

RESUMO

Surveillance of the SARS-CoV-2 variants including the quickly spreading mutants by rapid and near real-time sequencing of the viral genome provides an important tool for effective health policy decision making in the ongoing COVID-19 pandemic. Here we evaluated PCR-tiling of short (~400-bp) and long (~2 and ~2.5-kb) amplicons combined with nanopore sequencing on a MinION device for analysis of the SARS-CoV-2 genome sequences. Analysis of several sequencing runs demonstrated that using the long amplicon schemes outperforms the original protocol based on the 400-bp amplicons. It also illustrated common artefacts and problems associated with PCR-tiling approach, such as uneven genome coverage, variable fraction of discarded sequencing reads, including human and bacterial contamination, as well as the presence of reads derived from the viral sub-genomic RNAs.


Assuntos
COVID-19/diagnóstico , Sequenciamento por Nanoporos/métodos , Pandemias , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
17.
Viruses ; 13(4)2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920598

RESUMO

This study reports on a fatal case of a captive great grey owl infected with the West Nile virus (WNV) in the zoological garden Kosice, eastern Slovakia (Central Europe). The tissue samples of the dead owl were used for virus isolation and genetic characterization. The novel isolate is genetically closer to Hungarian, Greek, and Bulgarian strains from the central/southern European clade of lineage 2 than to the strains previously isolated in Slovakia. Interestingly, it carries NS3-249P, a molecular virulence determinant associated with higher neurovirulence, which has not previously been observed in Slovakia. Subsequent serological investigation of the captive owls revealed additional seropositive animals, indicating local WNV transmission. Although no WNV-positive mosquitoes were found, the presence of the WNV principal vector Culex pipiens complex together with the described fatal case and further serological findings indicate an endemic focus of bird-neurovirulent WNV variant in the area.


Assuntos
Doenças das Aves/virologia , Estrigiformes/virologia , Virulência/genética , Febre do Nilo Ocidental , Animais , Eslováquia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/patogenicidade
18.
Sci Rep ; 11(1): 20494, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650153

RESUMO

The emergence of a novel SARS-CoV-2 B.1.1.7 variant sparked global alarm due to increased transmissibility, mortality, and uncertainty about vaccine efficacy, thus accelerating efforts to detect and track the variant. Current approaches to detect B.1.1.7 include sequencing and RT-qPCR tests containing a target assay that fails or results in reduced sensitivity towards the B.1.1.7 variant. Since many countries lack genomic surveillance programs and failed assays detect unrelated variants containing similar mutations as B.1.1.7, we used allele-specific PCR, and judicious placement of LNA-modified nucleotides to develop an RT-qPCR test that accurately and rapidly differentiates B.1.1.7 from other SARS-CoV-2 variants. We validated the test on 106 clinical samples with lineage status confirmed by sequencing and conducted a country-wide surveillance study of B.1.1.7 prevalence in Slovakia. Our multiplexed RT-qPCR test showed 97% clinical sensitivity and retesting 6,886 SARS-CoV-2 positive samples obtained during three campaigns performed within one month, revealed pervasive spread of B.1.1.7 with an average prevalence of 82%. Labs can easily implement this test to rapidly scale B.1.1.7 surveillance efforts and it is particularly useful in countries with high prevalence of variants possessing only the ΔH69/ΔV70 deletion because current strategies using target failure assays incorrectly identify these as putative B.1.1.7 variants.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , SARS-CoV-2/genética , Alelos , COVID-19/epidemiologia , Humanos , Mutação , Prevalência , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Eslováquia/epidemiologia
19.
Viruses ; 11(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336825

RESUMO

Monitoring West Nile virus (WNV) and Usutu virus (USUV) activity now has the highest priority among mosquito-borne pathogenic viruses circulating in the European Union. This study documents a first time detection and the co-circulation of WNV lineage-2 (with the minimal prevalence of 0.46%) and USUV clade Europe 2 (with the minimal prevalence of 0.25%) in mosquitoes from the same habitat of south-western Slovakia and underlines necessity to perform rigorous surveillance in birds, mosquitoes, horses and humans in that country.


Assuntos
Culicidae/virologia , Infecções por Flavivirus/veterinária , Flavivirus/isolamento & purificação , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves/virologia , Culex/virologia , Ecossistema , Feminino , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Cavalos/virologia , Humanos , Mosquitos Vetores/virologia , Filogenia , Prevalência , Saúde Pública , Eslováquia/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/genética
20.
Vector Borne Zoonotic Dis ; 18(11): 611-619, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30016223

RESUMO

The present survey aimed to investigate flea and tick fauna parasitizing Slovak red fox populations with special emphasis on canine pathogens they transmit. A total of 407 fleas and 105 ticks were collected from 90 red foxes from two geographically distant regions. Seven flea species (Chaetopsylla globiceps, Pulex irritans, Archaeopsylla erinacei, Chaetopsylla rothschildi, Chaetopsylla trichosa, Ctenocephalides canis, and Ctenopthalmus assimilis) and three species of hard ticks (Ixodes ricinus, Ixodes hexagonus, Haemaphysalis concinna) were recorded on sampled animals. Consequently, the DNA of five different pathogen taxa was confirmed in collected arthropod vectors: Bartonella spp. (in P. irritans, Ch. globiceps, and Ct. assimilis), Rickettsia spp. (in A. erinacei, I. ricinus, I. hexagonus, and H. concinna), Anaplasma phagocytophilum (in I. ricinus), Theileria sp. (in Ch. globiceps and H. concinna), and Hepatozoon canis (in I. ricinus and I. hexagonus). Mycoplasma spp., Dipylidium caninum, and Acanthocheilonema reconditum were not found in fleas or ticks in this study.


Assuntos
Doenças do Cão/epidemiologia , Infestações por Pulgas/veterinária , Raposas/parasitologia , Ixodidae/microbiologia , Sifonápteros/microbiologia , Infestações por Carrapato/microbiologia , Animais , Doenças do Cão/microbiologia , Doenças do Cão/parasitologia , Cães , Infestações por Pulgas/epidemiologia , Ixodidae/parasitologia , Sifonápteros/parasitologia , Eslováquia , Infestações por Carrapato/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA