Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cytokine ; 99: 214-224, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28780379

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in the pathogenesis of type 2 diabetes mellitus (T2DM). Although the effect of high glucose on liver function has been described, the role of MIF in hepatic mitochondrial function during T2DM has not been studied. OBJECTIVE: We examine the influence of MIF to hepatic mitochondrial function in T2DM mouse model. METHODS: WT and Mif-/- BALB/c mice were treated with a single dose of streptozotocin (STZ). After an 8-week follow-up, serum glucose, proinflammatory cytokines, C-reactive protein (CRP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzyme quantification, and liver histological analyses were performed. Liver mitochondria were extracted, and mitochondrial function was evaluated by oximetry, swelling and peroxide production. RESULTS: Following treatment with STZ, WT mice (WT/STZ) developed significant hyperglycemia and high serum levels of MIF, tumor necrosis factor (TNF)-α, interleukin-ß (IL-ß), and CRP. Liver damage enzymes ALT and AST were found at high levels. In contrast, Mif-/-STZ lacked serum MIF levels and showed smaller increases in blood glucose, less TNF-α, IL-1ß, CPR, ALT and AST, and failure to develop clinical signs of disease compared to the WT/STZ group. Mitochondria extracted from the Mif-/-STZ liver showed similar respiratory control (RC) to WT/STZ or healthy mice with glutamate/malate or succinate as substrates. The four respiratory chain complexes also had comparable activities. WT/STZ-isolated mitochondria showed low swelling with calcium compared to mitochondria from Mif-/-STZ or healthy mice. Peroxide production was comparable in all groups. CONCLUSION: These results show although high systemic levels of MIF contribute to the development of T2DM pathology, the liver mitochondria remain unaltered. Importantly, the absence of MIF reduced the pathology of T2DM, also without altering liver mitochondrial function. These support MIF as a therapeutic target for the treatment of this disease in humans.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fígado/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Mitocôndrias/metabolismo , Animais , Proteína C-Reativa/metabolismo , Respiração Celular , Citocromos/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Eletrodos , Hiperglicemia/complicações , Hiperglicemia/patologia , Interleucina-1beta/sangue , Oxirredutases Intramoleculares/deficiência , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fígado/patologia , Fatores Inibidores da Migração de Macrófagos/deficiência , Masculino , Camundongos Endogâmicos BALB C , Dilatação Mitocondrial , Oxigênio/metabolismo , Peróxidos/metabolismo , Estreptozocina , Transaminases/metabolismo , Fator de Necrose Tumoral alfa/sangue
2.
J Bioenerg Biomembr ; 48(4): 451-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27503613

RESUMO

The associations among respiratory complexes in energy-transducing membranes have been established. In fact, it is known that the Gram-negative bacteria Paracoccus denitrificans and Escherichia coli have respiratory supercomplexes in their membranes. These supercomplexes are important for channeling substrates between enzymes in a metabolic pathway, and the assembly of these supercomplexes depends on the protein subunits and membrane lipids, mainly cardiolipin, which is present in both the mitochondrial inner membrane and bacterial membranes. The Gram-positive bacterium Bacillus subtilis has a branched respiratory chain, in which some complexes generate proton motive force whereas others constitute an escape valve of excess reducing power. Some peculiarities of this respiratory chain are the following: a type II NADH dehydrogenase, a unique b 6 c complex that has a b 6 type cytochrome with a covalently bound heme, and a c-type heme attached to the third subunit, which is similar to subunit IV of the photosynthetic b 6 f complex. Cytochrome c oxygen reductase (caa 3 ) contains a c-type cytochrome on subunit I. We previously showed that the b 6 c and the caa 3 complexes form a supercomplex. Both the b 6 c and the caa 3 together with the quinol oxygen reductase aa 3 generate the proton motive force in B. subtilis. In order to seek proof that this supercomplex is important for bacterial growth in aerobic conditions we compared the b 6 c: caa 3 supercomplex from wild type membranes with membranes from two mutants lacking cardiolipin. Both mutant complexes were found to have similar activity and heme content as the wild type. Clear native electrophoresis showed that mutants lacking cardiolipin had b 6 c:caa 3 supercomplexes of lower mass or even individual complexes after membrane solubilization with digitonin. The use of dodecyl maltoside revealed a more evident difference between wild-type and mutant supercomplexes. Here we provide evidence showing that cardiolipin plays a role in the stability of the b 6 c:caa 3 supercomplex in B. subtilis.


Assuntos
Bacillus subtilis/metabolismo , Cardiolipinas/fisiologia , Transporte de Elétrons/fisiologia , Bacillus subtilis/enzimologia , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/metabolismo , Biomassa , Membrana Celular , Complexos Multienzimáticos/metabolismo , Proteínas Mutantes , Subunidades Proteicas , Força Próton-Motriz
3.
Toxicol Pathol ; 41(4): 628-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23104767

RESUMO

Particulate matter, with a mean aerodynamic diameter of ≤10 µm (PM10), exposure is considered as a risk factor for cardiovascular and respiratory diseases. The mechanism of cell damage induced by PM10 exposure is related to mitochondrial alterations. The aim of this work was to investigate the detailed alterations induced by PM10 on mitochondrial function. Since lung tissue is one of the most important targets of PM10 inhalation, isolated mitochondria from lung rat tissue were exposed to PM10 and structural alterations were analyzed by transmission electron microscopy. Mitochondrial function was evaluated by respiratory control index (RCI), membrane potential, adenosine triphosphate (ATP) synthesis, and activity of respiratory chain. Results showed that exposure to PM10 in isolated mitochondria from lung tissue caused enlarged intermembrane spaces and shape alterations, disruption of cristae, and the decrease in dense granules. Oxygraphic traces showed a concentration-dependent decrease in oxygen consumption and RCI. In addition, mitochondrial membrane potential, ATP synthesis, and activity of complexes II and IV showed an increase and decrease, respectively, after PM10 exposure. PM10 exposure induced disruption in structure and function in isolated mitochondria from lung rat tissue.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade , Análise de Variância , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Pulmão/citologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo
4.
J Bioenerg Biomembr ; 44(4): 473-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22790590

RESUMO

Bacillus subtilis has a bifurcated respiratory chain composed of a cytochrome branch and a quinol oxidase branch. The respiratory complexes of this bacterium have been elucidated mostly by the analysis of the genome and by the isolation of individual complexes. The supramolecular organization of this respiratory chain is not known. In this work, we have analyzed the organization of the supercomplex in membranes isolated from B. subtilis grown in aerobic conditions in a medium with 3 % succinate. We used two different native electrophoretic techniques, clear native electrophoresis (CNE) and blue native electrophoresis (BNE). Using a heme-specific stain and Coomassie blue stain with in-gel activity assays followed by mass spectrometry, we identified the proteins resolved in both the first and second dimensions of the electrophoreses to detect the supercomplexes. We found that complexes b ( 6 ) c and caa ( 3 ) form a very high molecular mass supercomplex with the membrane-bound cytochrome c ( 550 ) and with ATP synthase. Most of the ATP synthase was found as a monomer. Succinate dehydrogenase was identified within a high molecular band between F(0)F(1) and F(1) and together with nitrate reductase. The type-2 NADH dehydrogenase was detected within a low molecular mass band. Finally, the quinol oxidase aa ( 3 ) seems to migrate as an oligomer of high molecular mass.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Citocromos/química , Complexos Multienzimáticos/química , Aerobiose/fisiologia , Proteínas de Bactérias/metabolismo , Citocromos/metabolismo , Transporte de Elétrons/fisiologia , Complexos Multienzimáticos/metabolismo
5.
Photosynth Res ; 114(1): 43-58, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965313

RESUMO

Tolypothrix PCC 7601 and Fremyella diplosiphon UTEX B590 can produce two alternative phycobilisome (PBS) rods. PE-PBSs with one phycocyanin (PC) disk and multiple phycoerythrin (PE) disks are found in cells grown under green light (GL). PC-PBSs with only PC disks are obtained from cells grown under red light (RL). In this manuscript, we show the localization of the linker proteins and ferredoxin-NADP(+) oxidoreductase (FNR) in the PC-PBS and of PE-PBS rods using visible spectroscopy and mass spectrometry. PE-PBSs with different [PE]/[PC] ratios and PC-PBSs with different [PC]/[AP] (AP, allophycocyanin) ratios were isolated. CpeC was the primary rod linker protein found in the PBSs with a [PE]/[PC] ratio of 1.1, which indicates that this is the rod linker at the interphase PC-PE. CpeC and CpeD were identified in the PBSs with a [PE]/[PC] ratio of 1.6, which indicates that CpcD is the linker between the first and the second PE hexamers. Finally, CpeC, CpeD, and CpeE were found in the PBSs with a [PE]/[PC] ratio of 2.9, indicating the position of CpeE between the second and third PE moieties. CpcI2 was identified in the two PC-PBSs obtained from cells grown under RL, which indicates that CpcI2 is the linker between the first and second PC hexamers. CpcH2 was identified only in the PC-PBSs from Tolypothrix with a high [PC]/[AP] ratio of 1.92, which indicates that CpcH2 is the linker between the second and third PC hexamers. The PC-PBSs contained the rod cap protein L(R)(10) (CpcD), but this protein was absent in the PE-PBSs. PE-PBSs (lacking L(R)(10)) incorporated exogenous rFNR in a stoichiometry of up to five FNRs per PBS. A maximum of two FNRs per PBS were found in PC-PBSs (with L(R)(10)). These observations support the hypothesis that FNR binds at the distal ends of the PBS rods in the vacant site of CpcD L(R)(10). Finally, the molecular mass of the core membrane linker (L(CM)) was determined to be 102 kDa from a mass spectrometry analysis.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Algas/isolamento & purificação , Cianobactérias/metabolismo , Ficobilissomas/metabolismo , Proteômica , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Western Blotting , Cianobactérias/fisiologia , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Ficobilissomas/análise , Estrutura Terciária de Proteína , Proteínas Recombinantes , Alinhamento de Sequência
6.
FEMS Microbiol Ecol ; 58(3): 414-24, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17117986

RESUMO

The prevailing lifestyle of bacteria is sessile and they attach to surfaces in structures known as biofilms. In Escherichia coli, as in many other bacteria, biofilms are formed at the air-liquid interface, suggesting that oxygen has a critical role in the biofilm formation process. It has been reported that anaerobically growing E. coli laboratory strains are unable to form biofilms even after 96 h of incubation on Luria Bertani (LB) medium. After analyzing 22,000 transposon-induced and 26,000 chemically-induced mutants we failed to isolate an E. coli laboratory strain with the ability to form biofilm under anaerobic growth conditions. Notably, seven strains from a collection of E. coli isolated from different hosts and the environment had the ability to form biofilm in the absence of oxygen. Interestingly, spent medium from cultures of one strain, Souza298, can promote biofilm formation of E. coli laboratory strains growing under anaerobic conditions. Our results led us to propose that laboratory E. coli strains do not release (or synthesize) a molecule needed for biofilm formation under anoxic conditions but that they bear all the required machinery needed for this process.


Assuntos
Biofilmes/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Escherichia coli/isolamento & purificação , Aerobiose , Anaerobiose , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Meio Ambiente , Escherichia coli/classificação , Escherichia coli/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Cinética , Técnicas Microbiológicas , Oxigênio/farmacologia , Especificidade da Espécie
7.
Toxicol Lett ; 202(2): 111-9, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21315139

RESUMO

Titanium dioxide nanoparticles (TiO(2) NPs) are used in an increasing number of human products such as cosmetics, sunscreen, toothpaste and paints. However, there is clear evidence about effects associated to TiO(2) NPs exposure, which include lung inflammation and tumor formation and these effects are related to reactive oxygen species (ROS) formation. The ROS generation could be attributed to a mitochondrial dysfunction. Even though, it has been shown that TiO(2) NPs exposure can induce some alterations in mitochondria including cytochrome c release to cytosol, change in mitochondrial permeability and decrease of mitochondrial membrane potential (ΔΨ(m)), there is no information about the changes in mitochondrial function induced by TiO(2) NPs. We hypothesized that TiO(2) NPs effects are associated with mitochondrial dysfunction and redox unbalance. To test our hypothesis we isolated mitochondria from lung tissue of rats and exposed them to 10(g TiO(2) NPs (particle size<25nm)/mg protein for 1h. Our results showed that TiO(2) NPs decreases NADH levels and impairs ΔΨ(m) and mitochondrial function accompanied by ROS generation during mitochondrial respiration.


Assuntos
Pneumopatias/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Relação Dose-Resposta a Droga , Pneumopatias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Microscopia Confocal , Microscopia de Interferência , Mitocôndrias/metabolismo , NAD/metabolismo , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Titânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA