Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 208(3): 562-570, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031578

RESUMO

Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunocompetência/efeitos dos fármacos , Metabolismo dos Lipídeos , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , Vacinas Anticâncer/imunologia , Divisão Celular , Feminino , Fenofibrato/farmacologia , Glucose/metabolismo , Antígeno HLA-A2/imunologia , Humanos , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Influenza Humana/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Ativação Linfocitária , Antígeno MART-1/química , Antígeno MART-1/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Rosiglitazona/farmacologia , Método Simples-Cego , Vacinação , Vacinas Virais/imunologia , Adulto Jovem
2.
AIDS ; 38(2): 161-166, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800637

RESUMO

BACKGROUND: The induction of de novo CD8 + T-cell responses is essential for protective antiviral immunity, but this process is often impaired in people with HIV-1 (PWH). We investigated the extent to which the immune competence of naive CD8 + T cells, a key determinant of priming efficacy, could be preserved or restored in PWH via long-term antiretroviral therapy (ART). METHODS: We used flow cytometry, molecular analyses of gene transcription and telomere length, and a fully validated priming assay to characterize naive CD8 + T cells ex vivo and evaluate the induction of antigen-specific effector/memory CD8 + T cells in vitro , comparing age-matched healthy uninfected donors (HUDs), PWH on ART, and natural HIV-1 controllers (HICs). RESULTS: We found that naive CD8 + T cells were numerically reduced and exhibited a trend toward shorter telomere lengths in PWH on ART compared with HUDs and HICs. These features associated with impaired priming efficacy. However, we also found that naive CD8 + T cells were fully equipped proliferatively and transcriptionally in PWH on ART, enabling the generation of antigen-specific effector/memory CD8 + T cells with functional and phenotypic attributes comparable to those primed from HUDs. CONCLUSION: Our data suggest that naive CD8 + T cells in PWH on ART are intrinsically capable of generating functionally and phenotypically intact effector/memory CD8 + T cells in response to antigen, despite evidence of senescence and an overall numerical reduction that compromises priming efficacy relative to HUDs and HICs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Linfócitos T CD8-Positivos
3.
EBioMedicine ; 91: 104557, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058769

RESUMO

BACKGROUND: CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS: We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS: HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION: HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING: This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).


Assuntos
Infecções por HIV , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , Linfócitos T CD8-Positivos , Interferons/metabolismo , Adjuvantes Imunológicos
4.
Front Immunol ; 8: 1560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204144

RESUMO

As key cells, able to host and kill Leishmania parasites, inflammatory monocytes/macrophages are potential vaccine and therapeutic targets to improve immune responses in Leishmaniasis. Macrophage phenotypes range from M1, which express NO-mediated microbial killing, to M2 macrophages that might help infection. Resistance to Leishmaniasis depends on Leishmania species, mouse strain, and both innate and adaptive immunity. C57BL/6 (B6) mice are resistant and control infection, whereas Leishmania parasites thrive in BALB/c mice, which are susceptible to develop cutaneous lesions in the course of infection with Leishmania major, but not upon infection with Leishmania braziliensis. Here, we investigated whether a deficit in early maturation of inflammatory monocytes into macrophages in BALB/c mice underlies increased susceptibility to L. major versus L. braziliensis parasites. We show that, after infection with L. braziliensis, monocytes are recruited to peritoneum, differentiate into macrophages, and develop an M1 phenotype able to produce proinflammatory cytokines in both B6 and BALB/c mice. Nonetheless, more mature macrophages from B6 mice expressed inducible NO synthase (iNOS) and higher NO production in response to L. braziliensis parasites, whereas BALB/c mice developed macrophages expressing an incomplete M1 phenotype. By contrast, monocytes recruited upon L. major infection gave rise to immature macrophages that failed to induce an M1 response in BALB/c mice. Overall, these results are consistent with the idea that resistance to Leishmania infection correlates with improved maturation of macrophages in a mouse-strain and Leishmania-species dependent manner. All-trans retinoic acid (ATRA) has been proposed as a therapy to differentiate immature myeloid cells into macrophages and help immunity to tumors. To prompt monocyte to macrophage maturation upon L. major infection, we treated B6 and BALB/c mice with ATRA. Unexpectedly, treatment with ATRA reduced proinflammatory cytokines, iNOS expression, and parasite killing by macrophages. Moreover, ATRA promoted an M1 to M2 transition in bone marrow-derived macrophages from both strains. Therefore, ATRA uncouples macrophage maturation and development of M1 phenotype and downmodulates macrophage-mediated immunity to L. major parasites. Cautions should be taken for the therapeutic use of ATRA, by considering direct effects on innate immunity to intracellular pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA