Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Evol Biol ; 15: 141, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26183103

RESUMO

BACKGROUND: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. RESULTS: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). CONCLUSIONS: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North- and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Vison/genética , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Europa (Continente) , Deriva Genética , Repetições de Microssatélites , Filogenia , Dinâmica Populacional
2.
Gene ; 375: 1-13, 2006 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-16624502

RESUMO

The nucleotide sequences of the complete mitochondrial genome and nine partial nuclear genes of the Pyrenean desman (Galemys pyrenaicus) were determined in order to establish the relative phylogenetic position of this species at different taxonomic levels within the placental tree. Phylogenetic relationships of desman within the family Talpidae were inferred based on complete mitochondrial cytochrome b gene nucleotide sequence data. The Pyrenean desman was unambiguously recovered as sister group of the Russian desman (Desmana moschata) confirming the monophyly of the subfamily Desmaninae. However, phylogenetic relationships among major lineages within the Talpidae could not be confidently resolved. Phylogenetic analyses based on mitochondrial (at the amino acid level) and nuclear (at the nucleotide level) sequence data sets confidently placed desman within the Eulipotyphla (that also included moles, shrews, and hedgehogs), and partially recovered placental interordinal relationships. The monophyly of Laurasiatheria (including Eulipotyphla, Chiroptera, Carnivora, Pholidota, Perissodactyla, and Cetartiodactyla) was strongly supported. Mitochondrial amino acid sequences of Pholidota (pangolins) were found to bias phylogenetic inferences due to long-branch attraction effects. A Bayesian inference based on a combined mitochondrial and nuclear data set without Pholidota arrived at an almost fully resolved tree that supported the basal position of Eulipotyphla within Laurasiatheria.


Assuntos
Eulipotyphla/classificação , Filogenia , Animais , Sequência de Bases , DNA/genética , Primers do DNA , Eulipotyphla/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA