Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291385

RESUMO

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Microglia/metabolismo , Multiômica , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/genética , Fibrinogênio
2.
Proc Natl Acad Sci U S A ; 121(31): e2323050121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042684

RESUMO

Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.


Assuntos
Barreira Hematoencefálica , Cerebelo , Fibrinogênio , Proteínas Hedgehog , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Animais , Fibrinogênio/metabolismo , Cerebelo/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Humanos , Animais Recém-Nascidos , Recém-Nascido , Neurogênese , Feminino , Masculino , Modelos Animais de Doenças
3.
J Neuroinflammation ; 21(1): 94, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622640

RESUMO

BACKGROUND: Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS: We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS: We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS: These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.


Assuntos
Lesões Encefálicas Traumáticas , Fibrina , Humanos , Camundongos , Animais , Fibrina/genética , Fibrina/metabolismo , Lesões Encefálicas Traumáticas/patologia , Fibrinogênio/metabolismo , Imunidade Inata , Estresse Oxidativo , Camundongos Endogâmicos C57BL
4.
Brain ; 144(8): 2291-2301, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34426831

RESUMO

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Oligodendroglia/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Barreira Hematoencefálica/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Medula Espinal/metabolismo
5.
Nat Neurosci ; 24(1): 19-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318667

RESUMO

Microglial surveillance is a key feature of brain physiology and disease. Here, we found that Gi-dependent microglial dynamics prevent neuronal network hyperexcitability. By generating MgPTX mice to genetically inhibit Gi in microglia, we show that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony after physiologically evoked neuronal activity in awake adult mice. Thus, Gi-dependent microglia dynamics may prevent hyperexcitability in neurological diseases.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/fisiologia , Microglia/fisiologia , Rede Nervosa/fisiologia , Animais , Sinalização do Cálcio , Movimento Celular , Convulsivantes , Eletroencefalografia , Vigilância Imunológica , Camundongos , Microglia/enzimologia , Microglia/ultraestrutura , Doenças do Sistema Nervoso/fisiopatologia , Fenômenos Fisiológicos do Sistema Nervoso , Pilocarpina , Convulsões/fisiopatologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
6.
Nat Genet ; 46(7): 731-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908248

RESUMO

Glioma, the most common central nervous system cancer in adults, has poor prognosis. Here we identify a new SNP associated with glioma risk, rs1920116 (near TERC), that reached genome-wide significance (Pcombined = 8.3 × 10(-9)) in a meta-analysis of genome-wide association studies (GWAS) of high-grade glioma and replication data (1,644 cases and 7,736 controls). This region has previously been associated with mean leukocyte telomere length (LTL). We therefore examined the relationship between LTL and both this new risk locus and other previously established risk loci for glioma using data from a recent GWAS of LTL (n = 37,684 individuals). Alleles associated with glioma risk near TERC and TERT were strongly associated with longer LTL (P = 5.5 × 10(-20) and 4.4 × 10(-19), respectively). In contrast, risk-associated alleles near RTEL1 were inconsistently associated with LTL, suggesting the presence of distinct causal alleles. No other risk loci for glioma were associated with LTL. The identification of risk alleles for glioma near TERC and TERT that also associate with telomere length implicates telomerase in gliomagenesis.


Assuntos
Glioma/genética , Polimorfismo de Nucleotídeo Único/genética , RNA/genética , Telomerase/genética , Telômero/genética , Adulto , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Genótipo , Glioma/patologia , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Gradação de Tumores , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA