Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Med ; 13(3): e6854, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189547

RESUMO

BACKGROUND: In China, rapid intraoperative diagnosis of frozen sections of thyroid nodules is used to guide surgery. However, the lack of subspecialty pathologists and delayed diagnoses are challenges in clinical treatment. This study aimed to develop novel diagnostic approaches to increase diagnostic effectiveness. METHODS: Artificial intelligence and machine learning techniques were used to automatically diagnose histopathological slides. AI-based models were trained with annotations and selected as efficientnetV2-b0 from multi-set experiments. RESULTS: On 191 test slides, the proposed method predicted benign and malignant categories with a sensitivity of 72.65%, specificity of 100.0%, and AUC of 86.32%. For the subtype diagnosis, the best AUC was 99.46% for medullary thyroid cancer with an average of 237.6 s per slide. CONCLUSIONS: Within our testing dataset, the proposed method accurately diagnosed the thyroid nodules during surgery.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/cirurgia , Inteligência Artificial , Aprendizado de Máquina , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA