Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stat Med ; 37(11): 1846-1858, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29399833

RESUMO

Time-to-event data are very common in observational studies. Unlike randomized experiments, observational studies suffer from both observed and unobserved confounding biases. To adjust for observed confounding in survival analysis, the commonly used methods are the Cox proportional hazards (PH) model, the weighted logrank test, and the inverse probability of treatment weighted Cox PH model. These methods do not rely on fully parametric models, but their practical performances are highly influenced by the validity of the PH assumption. Also, there are few methods addressing the hidden bias in causal survival analysis. We propose a strategy to test for survival function differences based on the matching design and explore sensitivity of the P-values to assumptions about unmeasured confounding. Specifically, we apply the paired Prentice-Wilcoxon (PPW) test or the modified PPW test to the propensity score matched data. Simulation studies show that the PPW-type test has higher power in situations when the PH assumption fails. For potential hidden bias, we develop a sensitivity analysis based on the matched pairs to assess the robustness of our finding, following Rosenbaum's idea for nonsurvival data. For a real data illustration, we apply our method to an observational cohort of chronic liver disease patients from a Mayo Clinic study. The PPW test based on observed data initially shows evidence of a significant treatment effect. But this finding is not robust, as the sensitivity analysis reveals that the P-value becomes nonsignificant if there exists an unmeasured confounder with a small impact.


Assuntos
Estudos Observacionais como Assunto/estatística & dados numéricos , Análise de Sobrevida , Viés , Bioestatística , Causalidade , Estudos de Coortes , Simulação por Computador , Fatores de Confusão Epidemiológicos , Humanos , Estimativa de Kaplan-Meier , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/mortalidade , Modelos Logísticos , Penicilamina/uso terapêutico , Pontuação de Propensão , Modelos de Riscos Proporcionais
2.
J Appl Stat ; 48(8): 1496-1512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34349336

RESUMO

This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times are commonly found in the two largest studies of long-term survivorship after childhood cancer, the datasets that motivated this work. However, most existing methods for failure time data consider only right-censored or only interval-censored failure times, not the more general case where times may be mixed. Additionally, among regression models developed for mixed interval-censored failure times, the proportional hazards formulation is generally assumed. It is well-known that the proportional hazards model may be inappropriate in certain situations, and alternatives are needed to analyze mixed failure time data in such cases. To fill this need, we develop a maximum likelihood estimation procedure for the proportional odds regression model with mixed interval-censored data. We show that the resulting estimators are consistent and asymptotically Gaussian. An extensive simulation study is performed to assess the finite-sample properties of the method, and this investigation indicates that the proposed method works well for many practical situations. We then apply our approach to examine the impact of age at cranial radiation therapy on risk of growth hormone deficiency in long-term survivors of childhood cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA