Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963507

RESUMO

Molecular imaging is essential for diagnosis and treatment planning for glioblastoma patients. Positron emission tomography (PET) with tracers for the detection of the solute carrier family 7 member 5 (SLC7A5; also known as the amino acid transporter light chain L system, LAT1) and for the mitochondrial translocator protein (TSPO) is successfully used to provide additional information on tumor volume and prognosis. The current approaches for TSPO-PET and the visualization of tracer ([18F] Fluoroethyltyrosine, FET) uptake by LAT1 (FET-PET) do not yet exploit the full diagnostic potential of these molecular imaging techniques. Therefore, we investigated the expression of TSPO and LAT1 in patient glioblastoma (GBM) samples, as well as in various GBM mouse models representing patient GBMs of different genetic subtypes. By immunohistochemistry, we found that TSPO and LAT1 are upregulated in human GBM samples compared to normal brain tissue. Next, we orthotopically implanted patient-derived GBM cells, as well as genetically engineered murine GBM cells, representing different genetic subtypes of the disease. To determine TSPO and LAT1 expression, we performed immunofluorescence staining. We found that both TSPO and LAT1 expression was increased in tumor regions of the implanted human or murine GBM cells when compared to the neighboring mouse brain tissue. While LAT1 was largely restricted to tumor cells, we found that TSPO was also expressed by microglia, tumor-associated macrophages, endothelial cells, and pericytes. The Cancer Genome Atlas (TCGA)-data analysis corroborates the upregulation of TSPO in a bigger cohort of GBM patient samples compared to tumor-free brain tissue. In addition, AIF1 (the gene encoding for the myeloid cell marker Iba1) was also upregulated in GBM compared to the control. Interestingly, TSPO, as well as AIF1, showed significantly different expression levels depending on the GBM genetic subtype, with the highest expression being exhibited in the mesenchymal subtype. High TSPO and AIF1 expression also correlated with a significant decrease in patient survival compared to low expression. In line with this finding, the expression levels for TSPO and AIF1 were also significantly higher in (isocitrate-dehydrogenase wild-type) IDHWT compared to IDH mutant (IDHMUT) GBM. LAT1 expression, on the other hand, was not different among the individual GBM subtypes. Therefore, we could conclude that FET- and TSPO-PET confer different information on pathological features based on different genetic GBM subtypes and may thus help in planning individualized strategies for brain tumor therapy in the future. A combination of TSPO-PET and FET-PET could be a promising way to visualize tumor-associated myeloid cells and select patients for treatment strategies targeting the myeloid compartment.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Tecido Parenquimatoso/patologia , Receptores de GABA/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Tecido Parenquimatoso/metabolismo , Prognóstico , Receptores de GABA/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Quant Imaging Med Surg ; 13(1): 293-308, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36620177

RESUMO

Background: Moyamoya disease (MMD) is a teratogenic and lethal disease. However, existing studies do not sufficiently indicate the impact factors. Therefore, we investigated the different impact factors on cerebral hemodynamics after revascularization in patients with MMD. Methods: We retrospectively collected the clinical data of 233 adult patients with MMD who underwent revascularization surgery in the Department of Neurosurgery, Renmin Hospital of Wuhan University, from January 2015 to June 2021 for this retrospective cohort study. We analyzed the effects on hemodynamic improvement of age, sex, stroke type, early symptoms, Suzuki stage, history of hypertension, history of diabetes, and history of hyperlipidemia in patients with MMD. We also evaluated the efficacy of different revascularization strategies and we verified the effect of computed tomography perfusion (CTP) in evaluating cerebral hemodynamics. Results: The CTP values demonstrated that δ cerebral blood volume (CBV) values were significantly higher in the combined group [1.01 (0.87-1.75)] relative to those in the indirect group [1.34 (1.01-1.63); P=0.027]. There was no statistical significance in the improvement of clinical symptoms and clinical prognosis between the indirect and combined groups. Patients with MMD with diabetes [δ mean transit time (MTT), 0.49 (0.35-0.70) vs. 0.72 (0.52-0.87); P<0.001] or calcium channel blocker (CCB) [δCBV, 1.46 (1.10-1.83) vs. 1.12 (0.93-1.54); P=0.001] had better cerebral hemodynamics than patients in non-diabetic group or non-CCB group after revascularization. Conclusions: We didn't find differences in clinical outcome between indirect and combined revascularization in patients with MMD. we demonstrated that CTP values can be used as a way to detect postoperative cerebral hemodynamic changes in MMD patients. Interestingly, we found that MMD patients with diabetes or CCB showed better cerebral perfusion after revascularization.

3.
Front Pharmacol ; 13: 1001588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278207

RESUMO

Objective: Angiogenesis is a pathological feature of glioblastoma. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a vital source of reactive oxygen species (ROS) related to angiogenesis. However, signaling pathways correlated with the isoform oxidase are unknown. The aim of this study was to elucidate the detailed mechanism of the role of NOX4 in angiogenesis in glioblastoma. Methods: Public datasets were searched for studies on immunohistochemistry and western blotting to evaluate NOX4 expression in glioma. The location of NOX4 expression was detected by immunofluorescence. We conducted conditional deletion of the translocator protein (TSPO) targeting the protein with the synthetic ligand XBD173 in the glioblastoma mouse model. NOX4 downregulation was conducted with the NOX4 inhibitor GLX351322, and ROS production and angiogenesis were detected in glioma tissues. Results: Clinical samples and public datasets showed that NOX4 was upregulated and associated with the prognosis. NOX4 is mainly expressed in endothelial cells of glioblastoma. Both TSPO and NOX4 promoted angiogenesis in an ROS-dependent manner, suggesting that TSPO triggered ROS production in glioblastoma via NOX4. Conclusion: These results showed that TSPO is an upstream target of NOX4-derived mitochondrial ROS, which is indispensable for NOX4-derived mitochondrial ROS-induced angiogenesis in glioblastoma. TSPO-NOX4 signaling could serve as a molecular target for therapeutic strategies for glioblastoma.

4.
Front Oncol ; 11: 769033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047393

RESUMO

The Fc Fragment of IgG Binding Protein (FCGBP) has been proven to participate in intestinal tumor immunity. However, the biological role of FCGBP has remained unclear in glioma. The differential expression of FCGBP was explored by Oncomine and GEPIA databases. The effect of FCGBP on prognosis was analyzed via Kaplan-Meier plotter and GEPIA. The Tumor Immune Estimation Resource (TIMER) tool was used to determine the correlations of FCGBP expression with tumor immune infiltration. Firstly, FCGBP was highly expressed in glioma and correlated with a worse prognosis. Gene Ontology (GO) and KEGG pathway enrichment analyses revealed that the differentially expressed genes (DEGs) and co-expression genes of FCGBP were mainly involved in the immune response. Furthermore, FCGBP expression was positively associated with multiple immune cells infiltrates as well as the expression levels of multiple immune markers in glioma. FCGBP co-expression networks mostly participated in the regulation of immune response. Finally, immunohistochemistry (IHC) assays were conducted to explore the expression of FCGBP, PD-L1, CCL2 and CD8 in glioma and correlations between them. We found that PDL1 and FCGBP were synchronously upregulated in glioma tissues. These findings revealed a new mechanism by which FCGBP participates in the immune tolerance of glioma, and implied the potential of FCGBP as a therapeutic target or predictive marker for patients.

5.
Cell Syst ; 12(3): 248-262.e7, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33592194

RESUMO

Aggressive brain tumors like glioblastoma depend on support by their local environment and subsets of tumor parenchymal cells may promote specific phases of disease progression. We investigated the glioblastoma microenvironment with transgenic lineage-tracing models, intravital imaging, single-cell transcriptomics, immunofluorescence analysis as well as histopathology and characterized a previously unacknowledged population of tumor-associated cells with a myeloid-like expression profile (TAMEP) that transiently appeared during glioblastoma growth. TAMEP of mice and humans were identified with specific markers. Notably, TAMEP did not derive from microglia or peripheral monocytes but were generated by a fraction of CNS-resident, SOX2-positive progenitors. Abrogation of this progenitor cell population, by conditional Sox2-knockout, drastically reduced glioblastoma vascularization and size. Hence, TAMEP emerge as a tumor parenchymal component with a strong impact on glioblastoma progression.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Células Mieloides/patologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Tecido Parenquimatoso/irrigação sanguínea , Tecido Parenquimatoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA