Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202404025, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38659286

RESUMO

Reactive metals hydrolysis offers significant advantages for hydrogen storage and production. However, the regeneration of common reactive metals (e.g., Mg, Al, etc.) is energy-intensive and produces unwanted byproducts such as CO2 and Cl2. Herein, we employ Zn as a reactive mediator that can be easily regenerated by electrolysis of ZnO in an alkaline solution with a Faradaic efficiency of >99.9 %. H2 is produced in the same electrolyte by constructing a Zn-H2O hydrolysis battery consisting of a Zn anode and a Raney-Ni cathode to unlock the Zn-H2O reaction. The entire two-step water splitting reaction with a net energy efficiency of 70.4 % at 80 °C and 50 mA cm-2. Additionally, the Zn-H2O system can be charged using renewable energy to produce H2 on demand and runs for 600 cycles only sacrificing 3.76 % energy efficiency. DFT calculations reveal that the desorption of H* on Raney-Ni (-0.30 eV) is closer to zero compared with that on Zn (-0.87 eV), indicating a faster desorption of H* at low overpotential. Further, a 24 Ah electrolyzer is demonstrated to produce H2 with a net energy efficiency of 65.5 %, which holds promise for its real application.

2.
J Hazard Mater ; 477: 135304, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088957

RESUMO

The utilization of biomass-assisted pyrolysis in the recycling of spent lithium-ion batteries has emerged as a promising and reliable process. This article furnishes theoretical underpinnings and analytical insights into this method, showcasing sawdust pyrolysis reduction as an efficient means to recycle spent LiMn2O4 and LiNi0.6Co0.2Mn0.2O2 batteries. Through advanced thermogravimetry-gas chromatography-mass spectrometry analysis complemented by traditional thermodynamic demonstration, the synergistic effects of biomass pyrolysis reduction are elucidated, with minor autodecomposition and major carbothermal and gasthermal reduction pathways identified. The controlled manipulation of transition metals has demonstrated the capability to modulate surface pyrolysis gas catalytic reactions and facilitate the preparation of composite materials with diverse morphologies. Optimization of process conditions has culminated in recovery efficiency exceeding 99.0 % for LiMn2O4 and 99.5 % for LiNi0.6Co0.2Mn0.2O2. Economic and environmental analyses underscore the advantages of biomass reduction and recycling for these two types of spent LIBs: low energy consumption, environmental compatibility, and high economic viability.

3.
Waste Manag ; 135: 182-189, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509770

RESUMO

A low-cost and easy-available silicon (Si) feedstock is of great significance for developing high-performance lithium-ion battery (LIB) anode materials. Herein, we employ waste crystalline Si solar panels as silicon raw materials, and transform micro-sized Si (m-Si) into porous Si (p-Si) by an alloying/dealloying approach in molten salt where Li+ was first reduced and simultaneously alloyed with m-Si to generate Li-Si alloy at the cathode. Subsequently, the as-prepared Li-Si alloy served as the anode in the same molten salt to release Li+ into the molten salt, resulting in the production of p-Si by taking advantage of the volume expansion/contraction effect. In the whole process, Li+ was shuttled between the electrodes in molten LiCl-KCl, without consuming Li salt. The obtained p-Si was applied as an anode in a half-type LIBs that delivered a capacity of 2427.7 mAh g-1 at 1 A g-1 after 200 cycles with a capacity retention rate of 91.5% (1383.3 mAh g-1 after 500 cycles). Overall, this work offers a straightforward way to convent waste Si panels to high-performance Si anodes for LIBs, giving retired Si a second life and alleviating greenhouse gas emissions caused by Si production.


Assuntos
Lítio , Silício , Fontes de Energia Elétrica , Eletrodos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA