Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961737

RESUMO

Characterizing the surface deformation during the inter-survey period could assist in understanding rock mass progressive failure processes. Moreover, 3D reconstruction of rock mass surface is a crucial step in surface deformation detection. This study presents a method to reconstruct the rock mass surface at close range in a fast way using the improved structure from motion-multi view stereo (SfM) algorithm for surface deformation detection. To adapt the unique feature of rock mass surface, the AKAZE algorithm with the best performance in rock mass feature detection is introduced to improve SfM. The surface reconstructing procedure mainly consists of image acquisition, feature point detection, sparse reconstruction, and dense reconstruction. Hereafter, the proposed method was verified by three experiments. Experiment 1 showed that this method effectively reconstructed the rock mass model. Experiment 2 proved the advanced accuracy of the improved SfM compared with the traditional one in reconstructing the rock mass surface. Eventually, in Experiment 3, the surface deformation of rock mass was quantified through reconstructing images before and after the disturbance. All results have shown that the proposed method could provide reliable information in rock mass surface reconstruction and deformation detection.

2.
Sensors (Basel) ; 20(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252476

RESUMO

This paper studies the limitations of binocular vision technology in monitoring accuracy. The factors affecting the surface displacement monitoring of the slope are analyzed mainly from system structure parameters and environment parameters. Based on the error analysis theory, the functional relationship between the structure parameters and the monitoring error is studied. The error distribution curve is obtained through laboratory testing and sensitivity analysis, and parameter selection criteria are proposed. Corresponding image optimization methods are designed according to the error distribution curve of the environment parameters, and a large number of tests proved that the methods effectively improved the measurement accuracy of slope deformation monitoring. Finally, the reliability and accuracy of the proposed system and method are verified by displacement measurement of a slope on site.

3.
Sensors (Basel) ; 18(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200371

RESUMO

The paper presents an intelligent real-time slope surface deformation monitoring system based on binocular stereo-vision. To adapt the system to field slope monitoring, a design scheme of concentric marking point is proposed. Techniques including Zernike moment edge extraction, the least squares method, and k-means clustering are used to design a sub-pixel precision localization method for marker images. This study is mostly focused on the tracking accuracy of objects in multi-frame images obtained from a binocular camera. For this purpose, the Upsampled Cross Correlation (UCC) sub-pixel template matching technique is employed to improve the spatial-temporal contextual (STC) target-tracking algorithm. As a result, the tracking accuracy is improved to the sub-pixel level while keeping the STC tracking algorithm at high speed. The performance of the proposed vision monitoring system has been well verified through laboratory tests.

4.
Sensors (Basel) ; 17(6)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587275

RESUMO

Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA