Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(33): 7804-7833, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37539650

RESUMO

Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.


Assuntos
Infecções Bacterianas , MicroRNAs , Ácidos Nucleicos , Humanos , MicroRNAs/genética , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico
2.
ACS Appl Mater Interfaces ; 15(22): 27399-27410, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226047

RESUMO

Implantable electrochemical sensor holds great promise in the real-time monitoring of dopamine (DA) to regulate body function. However, the real application of these sensors is limited by the weak current signal of DA in the human body and the poor compatibility of the on-chip microelectronic devices. In this work, a SiC/graphene composite film was fabricated using laser chemical vapor deposition (LCVD) and employed as a DA sensor. The graphene in the porous nanoforest-like SiC framework offered efficient channels for electronic transmission, leading to an enhanced electron transfer rate and consequently an increased current response for DA detection. The three-dimensional (3D) porous network also facilitated the exposure of more catalytic active sites toward DA oxidation. Besides, the wide distribution of graphene in the nanoforest-like SiC films reduced the interfacial resistance of the charge transfer. The SiC/graphene composite film exhibited excellent electrocatalytic activity toward DA oxidation with a low detection limit of 0.11 µM and a high sensitivity of 0.86 µA·µM-1·cm-2. The film electrode also showed a wide linear response for DA in 0.5-78 µM, along with good selectivity, repeatability, and reproducibility. Furthermore, the cell counting kit-8 (CCK-8) and live-dead assays revealed that the film is also biocompatible for biomedical applications. Therefore, the nanoforest-like SiC/graphene composite film via the CVD process enables a promising candidate for an integrated miniature DA biosensor with high detection performance.


Assuntos
Doenças Cardiovasculares , Grafite , Humanos , Técnicas Eletroquímicas/métodos , Dopamina/química , Grafite/química , Reprodutibilidade dos Testes , Eletrodos
3.
ACS Omega ; 7(11): 9582-9593, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350346

RESUMO

The great challenge facing additive manufacturing is that the available high-performance 3D printing materials can hardly keep up with the rapid development of new additive manufacturing technology. Then, the commercial resins available in the market have some problems, such as poor thermal stability, insufficient light-curing degree, and large shrinkage after curing, which need to be solved urgently. This study reports a photocurable polyimide ink for digital light processing (DLP) 3D printing to prepare controllable 3D structures with high thermal stability, low shrinkage, and excellent comprehensive properties. In this study, pyromellitic dianhydride and diaminodiphenyl ether, the Kapton polyimide with the highest performance synthesized so far, were selected as raw materials, and 2,2'-bis(3,4-dicarboxylic acid) hexafluoropropane dianhydride containing fluorine was introduced to modify the branched-chain structure. The polyimide was prepared by one-step imidization, and then the graft with photocurable double bonds and certain functions was grafted by reaction of glycidyl methacrylate with phenolic hydroxyl groups. In this work, the solubility of the synthesized oligomer polyimide in organic solvents was greatly increased by combining three methods, thereby allowing the formation of ink for photocuring 3D printing, and the ink can be stacked to form low-shrinkage polyimide with complex controllable shape. Polyimide printed by DLP can produce complex structures with good mechanical character and thermal stability and small shrinkage. Therefore, the polyimide prepared in this study is considered to be a resin of great commercial possibility. In addition, due to its properties, it has important development potential in some fields with high demand for thermal stability, such as high-temperature cooling valves, aerospace, and other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA