Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
New Phytol ; 243(1): 271-283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38329350

RESUMO

Triacylglycerols (TAG), accumulate within lipid droplets (LD), predominantly surrounded by OLEOSINs (OLE), that protect TAG from hydrolysis. We tested the hypothesis that identifying and removing degradation signals from OLE would promote its abundance, preventing TAG degradation and enhancing TAG accumulation. We tested whether mutating potential ubiquitin-conjugation sites in a previously reported improved Sesamum indicum OLE (SiO) variant, o3-3 Cys-OLE (SiCO herein), would stabilize it and increase its lipogenic potential. SiCOv1 was created by replacing all five lysines in SiCO with arginines. Separately, six cysteine residues within SiCO were deleted to create SiCOv2. SiCOv1 and SiCOv2 mutations were combined to create SiCOv3. Transient expression of SiCOv3 in Nicotiana benthamiana increased TAG by two-fold relative to SiCO. Constitutive expression of SiCOv3 or SiCOv5, containing the five predominant TAG-increasing mutations from SiCOv3, in Arabidopsis along with mouse DGAT2 (mD) increased TAG accumulation by 54% in leaves and 13% in seeds compared with control lines coexpressing SiCO and mD. Lipid synthesis rates increased, consistent with an increase in lipid sink strength that sequesters newly synthesized TAG, thereby relieving the constitutive BADC-dependent inhibition of ACCase reported for WT Arabidopsis. These OLE variants represent novel factors for potentially increasing TAG accumulation in a variety of oil crops.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Sementes , Sesamum , Triglicerídeos , Triglicerídeos/metabolismo , Sementes/genética , Sementes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sesamum/genética , Sesamum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Genes de Plantas
2.
Plant Cell ; 33(9): 3076-3103, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34244767

RESUMO

Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Gotículas Lipídicas/fisiologia , Biogênese de Organelas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
3.
Plant Biotechnol J ; 21(2): 317-330, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36209479

RESUMO

Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 µm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Araceae , Animais , Camundongos , Triglicerídeos/metabolismo , Lipídeos , Ácidos Graxos/metabolismo , Arabidopsis/genética , Araceae/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética
4.
New Phytol ; 238(2): 724-736, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683527

RESUMO

CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lipídeos
5.
Plant Cell ; 32(9): 2932-2950, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690719

RESUMO

SEIPIN proteins are localized to endoplasmic reticulum (ER)-lipid droplet (LD) junctions where they mediate the directional formation of LDs into the cytoplasm in eukaryotic cells. Unlike in animal and yeast cells, which have single SEIPIN genes, plants have three distinct SEIPIN isoforms encoded by separate genes. The mechanism of SEIPIN action remains poorly understood, and here we demonstrate that part of the function of two SEIPIN isoforms in Arabidopsis (Arabidopsis thaliana), AtSEIPIN2 and AtSEIPIN3, may depend on their interaction with the vesicle-associated membrane protein (VAMP)-associated protein (VAP) family member AtVAP27-1. VAPs have well-established roles in the formation of membrane contact sites and lipid transfer between the ER and other organelles, and here, we used a combination of biochemical, cell biology, and genetics approaches to show that AtVAP27-1 interacts with the N termini of AtSEIPIN2 and AtSEIPIN3 and likely supports the normal formation of LDs. This insight indicates that the ER membrane tethering machinery in plant cells could play a role with select SEIPIN isoforms in LD biogenesis at the ER, and additional experimental evidence in Saccharomyces cerevisiae supports the possibility that this interaction may be important in other eukaryotic systems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Filogenia , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , Sementes/metabolismo , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido
6.
New Phytol ; 236(3): 1128-1139, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35851483

RESUMO

Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Hidrolases de Éster Carboxílico , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipase/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Ciclização de Substratos , Açúcares/metabolismo , Fatores de Transcrição , Triglicerídeos/metabolismo
7.
Planta ; 250(1): 79-94, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919065

RESUMO

MAIN CONCLUSION: Mouse FIT2 protein redirects the cytoplasmic terpene biosynthetic machinery to lipid-droplet-forming domains in the ER and this relocalization supports the efficient compartmentalization and accumulation of sesquiterpenes in plant cells. Mouse (Mus musculus) fat storage-inducing transmembrane protein 2 (MmFIT2), an endoplasmic reticulum (ER)-resident protein with an important role in lipid droplet (LD) biogenesis in mammals, can function in plant cells to promote neutral lipid compartmentalization. Surprisingly, in affinity capture experiments, the Nicotiana benthamiana 5-epi-aristolochene synthase (NbEAS), a soluble cytoplasm-localized sesquiterpene synthase, was one of the most abundant proteins that co-precipitated with GFP-tagged MmFIT2 in transient expression assays in N. benthamiana leaves. Consistent with results of pull-down experiments, the subcellular location of mCherry-tagged NbEAS was changed from the cytoplasm to the LD-forming domains in the ER, only when co-expressed with MmFIT2. Ectopic co-expression of NbEAS and MmFIT2 together with mouse diacylglycerol:acyl-CoA acyltransferase 2 (MmDGAT2) in N. benthamiana leaves substantially increased the numbers of cytoplasmic LDs and supported the accumulation of the sesquiterpenes, 5-epi-aristolochene and capsidiol, up to tenfold over levels elicited by Agrobacterium infection alone. Taken together, our results suggest that MmFIT2 recruits sesquiterpene synthetic machinery to ER subdomains involved in LD formation and that this process can enhance the efficiency of sesquiterpene biosynthesis and compartmentalization in plant cells. Further, MmFIT2 and MmDGAT2 represent cross-kingdom lipogenic protein factors that may be used to engineer terpene accumulation more broadly in the cytoplasm of plant vegetative tissues.


Assuntos
Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Nicotiana/metabolismo , Sesquiterpenos/metabolismo , Triglicerídeos/metabolismo , Animais , Vias Biossintéticas , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/química , Proteínas de Membrana/genética , Camundongos , Especificidade de Órgãos , Células Vegetais/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteômica , Sesquiterpenos/análise , Terpenos/metabolismo , Nicotiana/citologia , Nicotiana/genética , Triglicerídeos/análise
11.
Plant J ; 92(6): 1182-1201, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083105

RESUMO

Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady-state maintenance and turnover of plant LDs, particularly in non-seed tissues, are relatively unknown. Previously, we showed that the LD-associated proteins (LDAPs) are a family of plant-specific, LD surface-associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two-hybrid library using the Arabidopsis LDAP3 isoform as 'bait' in an effort to identify other novel LD protein constituents. One of the candidate LDAP3-interacting proteins was Arabidopsis At5g16550, which is a plant-specific protein of unknown function that we termed LDIP (LDAP-interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α-helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T-DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gotículas Lipídicas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Homeostase , Biogênese de Organelas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transporte Proteico , Sementes/genética , Sementes/metabolismo
17.
Plant Cell ; 27(9): 2616-36, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26362606

RESUMO

The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Triglicerídeos/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/genética
18.
Plant Biotechnol J ; 15(7): 824-836, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27987528

RESUMO

Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.


Assuntos
Proteínas de Membrana/metabolismo , Células Vegetais/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Camundongos , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/metabolismo , Triglicerídeos/metabolismo
19.
Plant Physiol ; 170(4): 2052-71, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26896396

RESUMO

Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Compartimento Celular , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Lipídeos/química , Células Vegetais/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ritmo Circadiano , Genes de Plantas , Proteínas Associadas a Gotículas Lipídicas/química , Proteínas Associadas a Gotículas Lipídicas/genética , Gotículas Lipídicas/metabolismo , Lipossomos/metabolismo , Fosfolipídeos/metabolismo , Dormência de Plantas , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Estresse Fisiológico , Frações Subcelulares/metabolismo , Temperatura
20.
Front Plant Sci ; 15: 1375471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590740

RESUMO

The sensor kinase Sucrose Non-fermenting-1-Related Kinase 1 (SnRK1) plays a central role in energy and metabolic homeostasis. KIN10 is a major catalytic (α) kinase subunit of SnRK1 regulated by transcription, posttranslational modification, targeted protein degradation, and its subcellular localization. Geminivirus Rep Interacting Kinase 1 and 2 (GRIK1 and 2) are immediate upstream kinases of KIN10. In the transient protein expression assays carried out in Nicotiana benthamiana (N. benthamiana) leaves, GRIK1 not only phosphorylates KIN10 but also simultaneously initiates its degradation. Posttranslational GRIK-mediated KIN10 degradation is dependent on both GRIK kinase activity and phosphorylation of the KIN10 T-loop. KIN10 proteins are significantly enriched in the grik1-1 grik2-1 double mutant, consistent with the transient assays in N. benthamiana. Interestingly. Among the enriched KIN10 proteins from grik1-1 grik2-1, is a longer isoform, putatively derived by alternative splicing which is barely detectable in wild-type plants. The reduced stability of KIN10 upon phosphorylation and activation by GRIK represents a mechanism that enables the KIN10 activity to be rapidly reduced when the levels of intracellular sugar/energy are restored to their set point, representing an important homeostatic control that prevents a metabolic overreaction to low-sugar conditions. Since GRIKs are activating kinases of KIN10, KIN10s in the grik1 grik2 double null mutant background remain un-phosphorylated, with only their basal level of activity, are more stable, and therefore increase in abundance, which also explains the longer isoform KIN10L which is a minor isoform in wild type is clearly detected in the grik1 grik2 double mutant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA