Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 149(15): 13841-13853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535163

RESUMO

PURPOSE: Necroptosis plays an essential role in oncogenesis and tumor progression in hepatocellular carcinoma (HCC). This study aimed to investigate the role of necroptosis in the development and progression of HCC. Specifically, we constructed a prognostic prediction model using necroptosis-associated genes (NAGs) to predict patient outcomes. METHODS: Using data from The Cancer Genome Atlas (TCGA) database, we analyzed gene expression and clinical data. We identified a 5-gene model associated with NAGs and explored genetic features and immune cell infiltration using the CIBERSORT algorithm. In addition, we conducted single-cell RNA sequencing to investigate the potential role of necroptosis in HCC. RESULTS: We constructed a 5-gene prognostic model based on NAGs that demonstrated excellent predictive accuracy in both training and validation sets. Using multifactorial cox regression analysis, we confirmed the risk score derived from the model as an independent predictor of prognosis, surpassing other clinical characteristics. Patients with high risk scores had significantly worse prognosis than those with low risk scores. To enhance the clinical utility of the necroptosis score, we constructed an accurate nomogram. Additionally, we compared metabolic pathway and immune microenvironment differences between HCC tumors with high and low risk scores. Our single-cell RNA sequencing analyses revealed that necroptosis in HCC was primarily associated with a specific subset of macrophages. CONCLUSIONS: Our study revealed the presence of two distinct necroptosis subtypes in HCC and developed a robust prognostic model with exceptional predictive accuracy. We observed significantly higher infiltration of M0 macrophages in the high-risk group. We propose that rescuing cytochrome c metabolism in HCC could serve as a potential therapeutic strategy. Furthermore, at a single-cell resolution, our analysis identified myeloid cells as the primary cells exhibiting necroptosis. Specifically, macrophages expressing CD5L, CETP, and MARCO, which may belong to a subset of tissue-resident macrophages, were found to be highly susceptible to necroptosis. These findings suggest the involvement of this specific macrophage subset in potential antitumor therapies. Our study provides novel insights into predicting patient prognosis and developing personalized therapeutic approaches for HCC.

2.
Front Plant Sci ; 14: 1072173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035039

RESUMO

Salinity, drought and low temperature are major environmental factors that adversely affect crop productivity worldwide. In this study we adopted an activation tagging approach to identify salt tolerant mutants of Arabidopsis. Thousands of tagged Arabidopsis lines were screened to obtain several potential mutant lines resistant to 150 mM NaCl. Transcript analysis of a salt-stress tolerance 1 (sst1) mutant line indicated activation of AtMSRB5 and AtMSRB6 which encode methionine sulfoxide reductases. Overexpression of AtMSRB5 in Arabidopsis (B5OX) showed a similar salt tolerant phenotype. Furthermore, biochemical analysis indicated stability of the membrane protein, H+-ATPase 2 (AHA2) through regulation of Na+/K+ homeostasis which may be involved in a stress tolerance mechanism. Similarly, overexpression of AtMSRB5 in transgenic rice demonstrated a salt tolerant phenotype via the modulation of Na+/K+ homeostasis without a yield drag under salt and oxidative stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA