Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(7): 2081-2099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849748

RESUMO

PURPOSE: Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS: We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS: [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION: [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Primatas
2.
Cerebellum ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37783917

RESUMO

OBJECTIVE: Despite being one of the most prevalent neurological diseases, the pathophysiology of essential tremor (ET) is not fully understood. Neuropathological studies have identified numerous degenerative changes in the cerebellum of ET patients, however. These data align with considerable clinical and neurophysiological data linking ET to the cerebellum. While neuroimaging studies have variably shown mild atrophy in the cerebellum, marked atrophy is not a clear feature of the cerebellum in ET and a search for a more suitable neuroimaging signature of neurodegeneration is in order. Postmortem studies in ET have examined different neuropathological alterations in the cerebellum, but as of yet have not focused on measures of generalized synaptic markers. This pilot study focuses on synaptic vesicle glycoprotein 2A (SV2A), a protein expressed in practically all synapses in the brain, as a measure of synaptic density in postmortem ET cases. METHODS: The current study utilized autoradiography with the SV2A radioligand [18F]SDM-16 to assess synaptic density in the cerebellar cortex and dentate nucleus in three ET cases and three age-matched controls. RESULTS: Using [18F]SDM-16, SV2A was 53% and 46% lower in the cerebellar cortex and dentate nucleus, respectively, in ET cases compared to age-matched controls. CONCLUSION: In this pilot study, using in vitro SV2A autoradiography, we have observed significantly lower synaptic density in the cerebellar cortex and dentate nucleus of ET cases. Future research could expand on our sample size and focus on in vivo imaging in ET to explore whether SV2A imaging could serve as a much-needed disease biomarker.

3.
Eur J Nucl Med Mol Imaging ; 49(5): 1482-1496, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34761284

RESUMO

PURPOSE: To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS: The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS: SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION: We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.


Assuntos
Glicoproteínas de Membrana , Vesículas Sinápticas , Aminoacridinas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Vesículas Sinápticas/metabolismo
4.
J Nucl Cardiol ; 29(1): 216-225, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32415628

RESUMO

OBJECTIVES: We aimed to develop a dynamic imaging technique for a novel PET superoxide tracer, [18F]DHMT, to allow for absolute quantification of myocardial reactive oxygen species (ROS) production in a large animal model. METHODS: Six beagle dogs underwent a single baseline dynamic [18F]DHMT PET study, whereas one animal underwent three serial dynamic studies over the course of chronic doxorubicin administration (1 mg·kg-1·week-1 for 15 weeks). During the scans, sequential arterial blood samples were obtained for plasma metabolite correction. The optimal compartment model and graphical analysis method were identified for kinetic modeling. Values for the left ventricular (LV) net influx rate, Ki, were reported for all the studies and compared with the LV standard uptake values (SUVs) and the LV-to-blood pool SUV ratios from the 60 to 90 minute static images. Parametric images were also generated. RESULTS: [18F]DHMT followed irreversible kinetics once oxidized within the myocardium in the presence of superoxide, as evidenced by the fitting generated by the irreversible two-tissue (2Ti) compartment model and the linearity of Patlak analysis. Myocardial Ki values showed a weak correlation with LV SUV (R2 = 0.27), but a strong correlation with LV-to-blood pool SUV ratio (R2 = 0.92). Generation of high-quality parametric images showed superior myocardial to blood contrast compared to static images. CONCLUSIONS: A dynamic PET imaging technique for [18F]DHMT was developed with full and simplified kinetic modeling for absolute quantification of myocardial superoxide production in a large animal model.


Assuntos
Tomografia por Emissão de Pósitrons , Superóxidos , Animais , Cães , Estudos de Viabilidade , Humanos , Miocárdio , Tomografia por Emissão de Pósitrons/métodos , Espécies Reativas de Oxigênio
5.
Eur J Nucl Med Mol Imaging ; 48(5): 1327-1338, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33416954

RESUMO

PURPOSE: Synaptic abnormalities are associated with many brain disorders. Recently, we developed a novel synaptic vesicle glycoprotein 2A (SV2A) radiotracer [18F]SynVesT-1 and demonstrated its excellent imaging and binding properties in nonhuman primates. The aim of this study was to perform dosimetry calculations in nonhuman primates and to evaluate this tracer in humans and assess its test-retest reliability in comparison with [11C]UCB-J. METHODS: Three rhesus monkeys underwent whole body dynamic PET scanning to estimate the absorbed dose. PET scans in six healthy human subjects were acquired. Time-activity curves (TACs) were generated with defined regions of interest (ROI). Reproducibility of distribution volume (VT) values and its sensitivity to scan duration were assessed with the one-tissue compartment (1TC) model. Non-displaceable binding potential (BPND) was calculated using centrum semiovale as the reference region. RESULTS: The dosimetry study showed high uptake in the urinary bladder and brain. In humans, [18F]SynVesT-1 displayed high uptake with maximum SUV of ~10 and appropriate kinetics with a quick rise in tracer uptake followed by a gradual clearance. Mean 1TC VT values (mL/cm3) ranged from 3.4 (centrum semiovale) to 19.6 (putamen) and were similar to those of [11C]UCB-J. Regional BPND values were 2.7-4.7 in gray matter areas, and mean BPND values across all ROIs were ~ 21% higher than those of [11C]UCB-J. The absolute test-retest variability of VT and BPND was excellent (< 9%) across all brain regions. CONCLUSIONS: [18F]SynVesT-1 demonstrates outstanding characteristics in humans: fast and high brain uptake, appropriate tissue kinetics, high levels of specific binding, and excellent test-retest reproducibility of binding parameters. As such, [18F]SynVesT-1 is proved to be a favorable radiotracer for SV2A imaging and quantification in humans.


Assuntos
Tomografia por Emissão de Pósitrons , Vesículas Sinápticas , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Glicoproteínas , Piridinas , Pirrolidinonas , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
6.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012954

RESUMO

Glioblastoma multiforme (GBM) is the deadliest type of brain tumor, affecting approximately three in 100,000 adults annually. Positron emission tomography (PET) imaging provides an important non-invasive method of measuring biochemically specific targets at GBM lesions. These powerful data can characterize tumors, predict treatment effectiveness, and monitor treatment. This review will discuss the PET imaging agents that have already been evaluated in GBM patients so far, and new imaging targets with promise for future use. Previously used PET imaging agents include the tracers for markers of proliferation ([11C]methionine; [18F]fluoro-ethyl-L-tyrosine, [18F]Fluorodopa,[18F]fluoro-thymidine, and [18F]clofarabine), hypoxia sensing ([18F]FMISO, [18F]FET-NIM, [18F]EF5, [18F]HX4, and [64Cu]ATSM), and ligands for inflammation. As cancer therapeutics evolve toward personalized medicine and therapies centered on tumor biomarkers, the development of complimentary selective PET agents can dramatically enhance these efforts. Newer biomarkers for GBM PET imaging are discussed, with some already in use for PET imaging other cancers and neurological disorders. These targets include Sigma 1, Sigma 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase. For GBM, these imaging agents come with additional considerations such as blood-brain barrier penetration, quantitative modeling approaches, and nonspecific binding.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Proteínas de Membrana/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons , Medicina de Precisão , Receptores sigma/metabolismo , Receptor Sigma-1
7.
Eur J Nucl Med Mol Imaging ; 46(9): 1952-1965, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31175396

RESUMO

PURPOSE: Synaptic abnormalities have been implicated in a variety of neuropsychiatric disorders, including epilepsy, Alzheimer's disease, and schizophrenia. Hence, PET imaging of the synaptic vesicle glycoprotein 2A (SV2A) may be a valuable in vivo biomarker for neurologic and psychiatric diseases. We previously developed [11C]UCB-J, a PET radiotracer with high affinity and selectivity toward SV2A; however, the short radioactive half-life (20 min for 11C) places some limitations on its broader application. Herein, we report the first synthesis of the longer-lived 18F-labeled counterpart (half-life: 110 min), [18F]UCB-J, and its evaluation in nonhuman primates. METHODS: [18F]UCB-J was synthesized from the iodonium precursors. PET imaging experiments with [18F]UCB-J were conducted in rhesus monkeys to assess the pharmacokinetic and in vivo binding properties. Arterial samples were taken for analysis of radioactive metabolites and generation of input functions. Regional time-activity curves were analyzed using the one-tissue compartment model to derive regional distribution volumes and binding potentials for comparison with [11C]UCB-J. RESULTS: [18F]UCB-J was prepared in high radiochemical and enantiomeric purity, but low radiochemical yield. Evaluation in nonhuman primates indicated that the radiotracer displayed pharmacokinetic and imaging characteristics similar to those of [11C]UCB-J, with moderate metabolism rate, high brain uptake, fast and reversible binding kinetics, and high specific binding signals. CONCLUSION: We have accomplished the first synthesis of the novel SV2A radiotracer [18F]UCB-J. [18F]UCB-J is demonstrated to be an excellent imaging agent and may prove to be useful for imaging and quantification of SV2A expression, and synaptic density, in humans.


Assuntos
Radioisótopos de Flúor/química , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Pirrolidinonas/síntese química , Animais , Técnicas de Química Sintética , Feminino , Macaca mulatta , Masculino , Piridinas/química , Pirrolidinonas/química , Radioquímica
8.
Molecules ; 23(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558382

RESUMO

Sigma-1 receptors (Sig1R) are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET) can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (S)-(-)- and (R)-(+)-[18F]fluspidine were investigated in several tumor cell lines including melanoma, squamous cell/epidermoid carcinoma, prostate carcinoma, and glioblastoma. Dynamic PET scans were performed in mice to investigate the suitability of both radiotracers for tumor imaging. The Sig1R expression in the respective tumors was confirmed by Western blot. Rather low radiotracer uptake was found in heterotopically (subcutaneously) implanted tumors. Therefore, a brain tumor model (U87-MG) with orthotopic implantation was chosen to investigate the suitability of the two Sig1R radiotracers for brain tumor imaging. High tumor uptake as well as a favorable tumor-to-background ratio was found. These results suggest that Sig1R PET imaging of brain tumors with [18F]fluspidine could be possible. Further studies with this tumor model will be performed to confirm specific binding and the integrity of the blood-brain barrier (BBB).


Assuntos
Benzofuranos/farmacologia , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Piperidinas/farmacologia , Receptores sigma/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Nus , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Receptor Sigma-1
9.
Molecules ; 21(12)2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27941676

RESUMO

Reactive oxygen species (ROS) play important roles in cell signaling and homeostasis. However, an abnormally high level of ROS is toxic, and is implicated in a number of diseases. Positron emission tomography (PET) imaging of ROS can assist in the detection of these diseases. For the purpose of clinical translation of [18F]6-(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-methyl-5,6-dihydrophenanthridine-3,8-diamine ([18F]DHMT), a promising ROS PET radiotracer, we first manually optimized the large-scale radiosynthesis conditions and then implemented them in an automated synthesis module. Our manual synthesis procedure afforded [18F]DHMT in 120 min with overall radiochemical yield (RCY) of 31.6% ± 9.3% (n = 2, decay-uncorrected) and specific activity of 426 ± 272 GBq/µmol (n = 2). Fully automated radiosynthesis of [18F]DHMT was achieved within 77 min with overall isolated RCY of 6.9% ± 2.8% (n = 7, decay-uncorrected) and specific activity of 155 ± 153 GBq/µmol (n = 7) at the end of synthesis. This study is the first demonstration of producing 2-[18F]fluoroethyl azide by an automated module, which can be used for a variety of PET tracers through click chemistry. It is also the first time that [18F]DHMT was successfully tested for PET imaging in a healthy beagle dog.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Cães , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Pesquisa Translacional Biomédica
10.
J Gen Virol ; 96(10): 3131-3142, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297664

RESUMO

In vivo imaging can provide real-time information and three-dimensional (3D) non-invasive images of deep tissues and organs, including the brain, whilst allowing longitudinal observation of the same animals, thus eliminating potential variation between subjects. Current in vivo imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT) and bioluminescence imaging (BLI), can be used to pinpoint the spatial location of target cells, which is urgently needed for revealing human immunodeficiency virus (HIV) dissemination in real-time and HIV-1 reservoirs during suppressive antiretroviral therapy (ART). To demonstrate that in vivo imaging can be used to visualize and quantify simian immunodeficiency virus (SIV)-transduced cells, we genetically engineered SIV to carry different imaging reporters. Based on the expression of the reporter genes, we could visualize and quantify the SIV-transduced cells via vesicular stomatitis virus glycoprotein pseudotyping in a mouse model using BLI, PET-CT or MRI. We also engineered a chimeric EcoSIV for in vivo infection study. Our results demonstrated that BLI is sensitive enough to detect as few as five single cells transduced with virus, whilst PET-CT can provide 3D images of the spatial location of as few as 10 000 SIV-infected cells. We also demonstrated that MRI can provide images with high spatial resolution in a 3D anatomical context to distinguish a small population of SIV-transduced cells. The in vivo imaging platform described here can potentially serve as a powerful tool to visualize lentiviral infection, including when and where viraemia rebounds, and how reservoirs are formed and maintained during latency or suppressive ART.


Assuntos
Imagem Molecular/métodos , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Animais , Genes Reporter , Imageamento Tridimensional , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Vírus da Imunodeficiência Símia/genética , Transdução Genética , Vesiculovirus/genética
11.
Mol Pharm ; 11(11): 3980-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-24720806

RESUMO

Epidermal growth-factor receptor (EGFR) is overexpressed in a wide variety of solid tumors and has served as a well-characterized target for cancer imaging and therapy. Cetuximab was the first mAb targeting EGFR approved by the FDA for the treatment of metastatic colorectal and head and neck cancers. Previous studies showed that (64)Cu (T1/2 = 12.7 h; ß(+) (17.4%)) labeled DOTA-cetuximab showed promise for PET imaging of EGFR-positive tumors; however the in vivo stability of this compound has been questioned. In this study, two recently developed cross-bridged macrocyclic chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to cetuximab using standard NHS coupling procedures and/or strain-promoted azide-alkyne cycloaddition (SPAAC) methodologies. The radiolabeling and in vitro/vivo evaluation of the resulting cetuximab conjugates were compared. Improved Cu-64 labeling efficiency and high specific activity (684 kBq/µg, decay corrected to the end of bombardment) were obtained with the CB-TE1K1P-PEG4-click-cetuximab conjugate. Saturation binding assays indicated that the prepared cetuximab conjugates had comparable affinity (1.32-2.00 nM) in the HCT116 human colorectal tumor cell membranes. In the subsequent in vivo evaluation, (64)Cu-CB-TE1K1P-PEG4-click-cetuximab demonstrated more rapid renal clearance with a higher tumor/nontumor ratio than other (64)Cu-labeled cetuximab conjugates, and it shows the greatest promise for imaging and therapy of EGFR-positive tumors.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais , Quelantes/metabolismo , Radioisótopos de Cobre , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Antineoplásicos/metabolismo , Cetuximab , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Radioisótopos de Cobre/farmacocinética , Feminino , Humanos , Imunoconjugados , Camundongos , Camundongos Nus , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Labelled Comp Radiopharm ; 57(4): 224-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24347474

RESUMO

The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years.


Assuntos
Quelantes/química , Radioisótopos de Cobre/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Animais , Química Click
13.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826468

RESUMO

Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.

14.
J Nucl Med ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360052

RESUMO

PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.

15.
Res Sq ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205584

RESUMO

Objective Despite being one of the most prevalent neurological diseases, the pathophysiology of essential tremor (ET) is not fully understood. Neuropathological studies have identified numerous degenerative changes in the cerebellum of ET patients, however. These data align with considerable clinical and neurophysiological data linking ET to the cerebellum. While neuroimaging studies have variably shown mild atrophy in the cerebellum, marked atrophy is not a clear feature of the cerebellum in ET and that a search for a more suitable neuroimaging signature of neurodegeneration is in order. Postmortem studies in ET have examined different neuropathological alterations in the cerebellum, but as of yet have not focused on measures of generalized synaptic markers. This pilot study focuses on synaptic vesicle glycoprotein 2A (SV2A), a protein expressed in practically all synapses in the brain, as a measure of synaptic density in postmortem ET cases. Methods The current study utilized autoradiography with the SV2A radioligand [ 18 F]SDM-16 to assess synaptic density in the cerebellar cortex and dentate nucleus in three ET cases and three age-matched controls. Results Using [ 18 F]SDM-16, SV2A was 53% and 46% lower in the cerebellar cortex and dentate nucleus, respectively, in ET cases compared to age-matched controls. Conclusion For the first time, using in vitro SV2A autoradiography, we have observed significantly lower synaptic density in the cerebellar cortex and dentate nucleus of ET cases. Future research could focus on in vivo imaging in ET to explore whether SV2A imaging could serve as a much-needed disease biomarker.

16.
Alzheimers Res Ther ; 15(1): 201, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968719

RESUMO

BACKGROUND: Progression of Alzheimer's disease leads to synapse loss, neural network dysfunction and cognitive failure. Accumulation of protein aggregates and brain immune activation have triggering roles in synaptic failure but the neuronal mechanisms underlying synapse loss are unclear. On the neuronal surface, cellular prion protein (PrPC) is known to be a high-affinity binding site for Amyloid-ß oligomers (Aßo). However, PrPC's dependence in knock-in AD models for tau accumulation, transcriptomic alterations and imaging biomarkers is unknown. METHODS: The necessity of PrPC was examined as a function of age in homozygous AppNL-G-F/hMapt double knock-in mice (DKI). Phenotypes of AppNL-G-F/hMapt mice with a deletion of Prnp expression (DKI; Prnp-/-) were compared with DKI mice with intact Prnp, mice with a targeted deletion of Prnp (Prnp-/-), and mice with intact Prnp (WT). Phenotypes examined included behavioral deficits, synapse loss by PET imaging, synapse loss by immunohistology, tau pathology, gliosis, inflammatory markers, and snRNA-seq transcriptomic profiling. RESULTS: By 9 months age, DKI mice showed learning and memory impairment, but DKI; Prnp-/- and Prnp-/- groups were indistinguishable from WT. Synapse loss in DKI brain, measured by [18F]SynVesT-1 SV2A PET or anti-SV2A immunohistology, was prevented by Prnp deletion. Accumulation of Tau phosphorylated at aa 217 and 202/205, C1q tagging of synapses, and dystrophic neurites were all increased in DKI mice but each decreased to WT levels with Prnp deletion. In contrast, astrogliosis, microgliosis and Aß levels were unchanged between DKI and DKI; Prnp-/- groups. Single-nuclei transcriptomics revealed differential expression in neurons and glia of DKI mice relative to WT. For DKI; Prnp-/- mice, the majority of neuronal genes differentially expressed in DKI mice were no longer significantly altered relative to WT, but most glial DKI-dependent gene expression changes persisted. The DKI-dependent neuronal genes corrected by Prnp deletion associated bioinformatically with synaptic function. Additional genes were uniquely altered only in the Prnp-/- or the DKI; Prnp-/- groups. CONCLUSIONS: Thus, PrPC-dependent synapse loss, phospho-tau accumulation and neuronal gene expression in AD mice can be reversed without clearing Aß plaque or preventing gliotic reaction. This supports targeting the Aßo-PrPC interaction to prevent Aßo-neurotoxicity and pathologic tau accumulation in AD.


Assuntos
Doença de Alzheimer , Príons , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Priônicas/genética , Transcriptoma , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Príons/metabolismo , Sinapses/patologia , Neurônios/metabolismo , Modelos Animais de Doenças , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Front Neurol ; 14: 1045644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846134

RESUMO

Introduction: Synapse loss is one of the hallmarks of Alzheimer's disease (AD) and is associated with cognitive decline. In this study, we tested [18F]SDM-16, a novel metabolically stable SV2A PET imaging probe, in the transgenic APPswe/PS1dE9 (APP/PS1) mouse model of AD and age-matched wild-type (WT) mice at 12 months of age. Methods: Based on previous preclinical PET imaging studies using [11C]UCB-J and [18F]SynVesT-1 in the same strain animals, we used the simplified reference tissue model (SRTM), with brain stem as the pseudo reference region to calculate distribution volume ratios (DVRs). Results: To simplify and streamline the quantitative analysis, we compared the standardized uptake value ratios (SUVRs) from different imaging windows to DVRs and found that the averaged SUVRs from 60-90 min post-injection (p.i.) are most consistent with the DVRs. Thus, we used averaged SUVRs from 60-90 min for group comparisons and found statistically significant differences in the tracer uptake in different brain regions, e.g., hippocampus (p = 0.001), striatum (p = 0.002), thalamus (p = 0.003), and cingulate cortex (p = 0.0003). Conclusions: In conclusion, [18F]SDM-16 was used to detect decreased SV2A levels in the brain of APP/PS1 AD mouse model at one year old. Our data suggest that [18F]SDM-16 has similar statistical power in detecting the synapse loss in APP/PS1 mice as [11C]UCB-J and [18F]SynVesT-1, albeit later imaging window (60-90 min p.i.) is needed when SUVR is used as a surrogate for DVR for [18F]SDM-16 due to its slower brain kinetics.

18.
Angew Chem Int Ed Engl ; 51(28): 7016-9, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22730316

RESUMO

Intramolecular redox reaction: heating N-alkyl, N-allyl-, and N-benzyl-substituted S-alkenyl sulfoximines under appropriate conditions results in the formation of NH-S-alkyl sulfoximines. The intramolecular redox reaction involves a hydride transfer that occurs by a 6-endo-trig process. The intermediates in the reaction can also give access to four- and six-membered heterocyclic rings and a new class of chiral dienes.

19.
Front Med (Lausanne) ; 9: 1062432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438061

RESUMO

Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.

20.
Front Neurosci ; 16: 872509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685772

RESUMO

The successful development and translation of PET imaging agents targeting ß-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer's disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA