Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0227423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470181

RESUMO

Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.


Assuntos
Antozoários , Rhodobacteraceae , Vibrio , Animais , Branqueamento de Corais , Ecossistema , Disbiose , Antozoários/microbiologia , Recifes de Corais
2.
Biochem Genet ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246965

RESUMO

Promoting the M2 phenotype polarization of microglia is of great significance in alleviating hypoxic-ischemic encephalopathy (HIE). The umbilical artery blood sample was collected to evaluate the expression of cGAS, and the aberrant expressed cGAS was verified in the oxygen glucose deprivation (OGD) microglia which was established to mimic HIE in vitro. Then the regulating role of cGAS on the transformation of microglia M2 phenotype polarization and glycolysis was investigated. Moreover, the lactylation of cGAS in OGD treated microglia was evaluated by western blot. cGAS was found to be highly expressed in umbilical artery blood of HIE group, and OGD treated microglia. OGD interference activated microglia into M1 phenotype by enhancing CD86 and suppressing CD206 levels; meanwhile, the microglia in OGD group highly expressed IL-1ß, iNOS and TNF-α, and lowly expressed IL-4, IL-10, and Arg-1. Inhibition of cGAS promotes the transformation of microglia from M1 to M2 phenotype. Meanwhile, OGD increased ECAR and decreased OCR to regulate glycolysis, cGAS deficiency inhibits glycolysis in OGD treated microglia. Moreover, the pan lysine lactylation (Pan-Kla) levels and lactated cGAS levels in microglia were upregulated in the OGD group. Lactate reversed the effects of cGAS knockdown on microglia polarization and glycolysis. The present study reveals that the cGAS-mediated neuron injury is associated with high level of cGAS lactylation. Inhibition of cGAS promotes the M2 phenotype polarization of microglia and suppress glycolysis. Thereby, targeting cGAS provides a new strategy for the development of therapeutic agents against HIE.

3.
J Environ Manage ; 352: 120071, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38246103

RESUMO

The effectiveness of biofertilizers as a cost-effective crop yield enhancer can be compromised by residual soil pollutants. However, the impact of accumulated polyadipate/butylene terephthalate microplastics (PBAT-MPs) from biodegradable mulch films on biofertilizer application and the consequent growth of crop plants remains unclear. Here, the effects of different levels of PBAT-MPs in soil treated with Bacillus amyloliquefaciens biofertilizer were assessed in a four-week potted experiment. PBAT-MPs significantly decreased the growth-promoting effect of the biofertilizer on Brassica chinensis L., resulting in a notable reduction in both above- and belowground biomass (up to 52.91% and 57.53%, respectively), as well as nitrate and crude fiber contents (up to 12.18% and 13.64%, respectively). In the rhizosphere microenvironment, PBAT-MPs increased soil organic carbon by 2.63-fold and organic matter by 2.68-fold, while enhancing sucrase (from 67.55% to 108.89%) and cellulase (from 31.26% to 49.10%) activities. PBAT-MPs also altered the rhizospheric bacterial community composition/diversity, resulting in more complex microbial networks. With regard to microbial function, PBAT-MPs impacted carbon metabolic function by inhibiting the 3-hydroxypropionate/4-hydroxybutyrate fixation pathway and influencing chitin and lignin degradation processes. Overall, the rhizospheric microbial profiles (composition, function, and network interactions) were the main contributors to plant growth inhibition. This study provides a practical case and theoretical basis for rational use of biodegradable mulch films and indicates that the residue of biodegradable films needs pay attention.


Assuntos
Alcenos , Carbono , Microplásticos , Plásticos , Solo
4.
Environ Res ; 216(Pt 2): 114586, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272598

RESUMO

Phosphorus speciation in the sediments is regulated by a series of physicochemical and microbial processes, and directly affects water phosphorus pool. However, the influence of culture activities and microbial metabolism on the sedimentary phosphorus speciation is poorly studied. In this study, we compared the abundance of distinguishable phosphorus phases and other physicochemical properties of sediments from oyster-farming areas and reference areas. The Geochip 5.0 technique was introduced to reveal the microbiological mechanisms of phosphorus metabolic alteration. The results showed that oyster culture enhanced the bioavailability of phosphorus in sediments. The free organic phosphorus was reduced significantly, whereas the free inorganic phosphorus and iron-bound phosphorus greatly increased in the oyster culture area (P ≤ 0.05). Moreover, the results of Geochip showed that the oyster culture reshaped the microbial network structure in sediments, with typical phosphate-solubilizing and phosphorus-accumulating microbes being enriched by 17.76% and 10.60%. The abundance of functional genes related to the main phosphorus cycle pathways were also significantly increased (P ≤ 0.05) in the culture area compared to the reference area. This work suggested that oyster culture can greatly improve the microbial phosphorus metabolism and provided insights into the environmental recovery and reconstruction from marine aquaculture activities.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Fósforo/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Aquicultura , China , Poluentes Químicos da Água/análise
5.
Environ Res ; 238(Pt 2): 117221, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775014

RESUMO

Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.


Assuntos
Antozoários , Percepção de Quorum , Animais , Percepção de Quorum/genética , Virulência , Bactérias/metabolismo , Fatores de Virulência
6.
Environ Res ; 212(Pt C): 113443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35550809

RESUMO

In the marine environment, the interactions among various species based on chemical signals play critical roles in influencing microbial structure and function. Quorum sensing (QS), the well-known signal-dependent communication autoinducer, is an important regulator in complex microbial communities. Here, we explored the QS gene profiles of phycosphere bacteria during a microcosmic phytoplankton bloom using metagenomic sequence data. More than fifteen subtypes of QS systems and 211,980 non-redundant amino acid sequences were collected and classified for constructing a hierarchical quorum-sensing database. The abundance of the various QS subtypes varied at different bloom stages and showed a strong correlation with phycosphere microorganisms. This suggested that QS is involved in regulating the phycosphere microbial succession during an algal bloom. A neutral community model revealed that the QS functional gene community assemblies were driven by stochastic processes. Co-occurrence model analysis showed that the QS gene networks of phycospheric microbes had similar topological structure and functional composition, which is a potential cornerstone for maintaining signal communication and population stabilization among microorganisms. Overall, QS systems have a strong relationship with the development of algal blooms and participate in regulating algal-associated microbial communities as chemical signals. This research reveals the chemical and ecological behavior of algal symbiotic bacteria and expands the current understanding of microbial dynamics in marine algal blooms.


Assuntos
Microbiota , Percepção de Quorum , Bactérias/metabolismo , Eutrofização , Fitoplâncton/genética
7.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409199

RESUMO

Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.


Assuntos
Biofilmes , Incrustação Biológica , Incrustação Biológica/prevenção & controle , Oxidantes/farmacologia , Pólen , Água do Mar/microbiologia
8.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34132094

RESUMO

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Assuntos
COVID-19 , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Organismos Aquáticos , Desinfetantes/toxicidade , Desinfecção , Ecossistema , Halogenação , Humanos , Pandemias , SARS-CoV-2 , Trialometanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Environ Microbiol ; 22(5): 1944-1962, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249540

RESUMO

Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.


Assuntos
Antozoários/microbiologia , Bactérias/metabolismo , Disbiose/fisiopatologia , Microbiota/fisiologia , Percepção de Quorum/fisiologia , Acil-Butirolactonas , Aeromonas/metabolismo , Animais , Mudança Climática , Recifes de Corais , Edwardsiella/metabolismo , Pseudomonas/metabolismo , Água do Mar/microbiologia , Transdução de Sinais/fisiologia , Simbiose/fisiologia , Vibrio/metabolismo
10.
Environ Sci Technol ; 54(19): 12254-12261, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32866374

RESUMO

The increasing use of nanoscale TiO2 particles (nTiO2) and their subsequent leakage into aquatic environments poses a threat to the ecosystem. One major concern is that nTiO2 may alter the environmental behaviors of arsenic (As) and disrupt the equilibrium of As accumulation and speciation in organisms. In this study, we investigated the effects of nTiO2 on the bioaccumulation and biotransformation of As(V) in the mussel Perna viridis. Exposure to nTiO2 significantly increased As accumulation in mussels. Our As speciation analysis demonstrated that nTiO2 treatment increased the proportion of inorganic As and reduced that of organic As, displaying inhibitory effects on the methylation and detoxification of inorganic As in mussels. Analysis of enzyme systems related to As metabolism in mussels demonstrated that nTiO2 might limit the methylation of inorganic As by suppressing the GST activity and GSH content. The strong adsorption capacity and weak desorption rate of As by nTiO2, which could result in the disruption of As distribution and decrease of the amount of As involved in biotransformation, might serve as another mechanism to the limition on As methylation in mussels. Moreover, exposure to nTiO2 disturbed the osmotic adjustment system in mussels by reducing arsenobetaine and Na+-K+-ATPase activity, resulting in enhanced toxicity of As after coexposure. The findings indicate, for the first time, that nTiO2 can block the transformation and detoxification of As in mussels, which would increase the risk of As to marine animals and even humans via the food chain, and may disrupt the biogeochemical cycle of As in natural environments.


Assuntos
Arsênio , Nanopartículas , Perna (Organismo) , Poluentes Químicos da Água , Animais , Arsênio/análise , Bioacumulação , Biotransformação , Ecossistema , Humanos , Titânio , Poluentes Químicos da Água/análise
11.
Mar Drugs ; 18(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971837

RESUMO

Quorum sensing inhibitors (QSIs) have been proven to be an innovative approach to interfering with biofilm formation, since this process is regulated by QS signals. However, most studies have focused on single-species biofilm formation, whereas studies of the effects of signal interference on the development of multispecies biofilm, especially in the natural environment, are still lacking. Here we develop and evaluate the anti-biofilm capability of a new QSI (rhodamine isothiocyanate analogue, RIA) in natural seawater. During the experiment, biofilm characteristics, microbial communities/functions and network interactions were monitored at 36, 80, and 180 h, respectively. The results showed that the biomass and 3D structure of the biofilm were significantly different in the presence of the QSI. The expression of genes involved in extracellular polysaccharide synthesis was also downregulated in the QSI-treated group. Dramatic differences in microbial composition, ß-diversity and functions between the RIA-treated group and the control group were also observed, especially in the early stage of biofilm development. Furthermore, co-occurrence model analysis showed that RIA reduced the complexity of the microbial network. This study demonstrates that rhodamine isothiocyanate analogue is an efficient QS inhibitor and has potential applications in controlling biofouling caused by multispecies biofilm, especially in the early stage of biofouling formation.


Assuntos
Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Percepção de Quorum/efeitos dos fármacos , Rodaminas/farmacologia , Rodaminas/química , Água do Mar/microbiologia , Fatores de Tempo
12.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126952

RESUMO

Given the ecological significance of microorganisms in algal blooming events, it is critical to understand the mechanisms regarding their distribution under different conditions. We tested the hypothesis that microbial community succession is strongly associated with algal bloom stages, and that the assembly mechanisms are cocontrolled by deterministic and stochastic processes. Community structures and underlying ecological processes of microbial populations (attached and free-living bacteria) at three algal bloom stages (pre-, during, and postbloom) over a complete dinoflagellate Scrippsiella trochoidea bloom were investigated. Both attached and free-living taxa had a strong response to the bloom event, and the latter was more sensitive than the former. The contribution of environmental parameters to microbial variability was 40.2%. Interaction analysis showed that complex positive or negative correlation networks exist in phycosphere microbes. These relationships were the potential drivers of mutualist and competitive interactions that impacted bacterial succession. Null model analysis showed that the attached bacterial community primarily exhibited deterministic processes at pre- and during-bloom stages, while dispersal-related processes contributed to a greater extent at the postbloom stage. In the free-living bacterial community, homogeneous selection and dispersal limitation dominated in the initial phase, which gave way to more deterministic processes at the two later stages. Relative contribution analyses further demonstrated that the community turnover of attached bacteria was mainly driven by environmental selection, while stochastic factors had partial effects on the assembly of free-living bacteria. Taken together, these data demonstrated that a robust link exists between bacterioplankton community structure and bloom progression, and phycosphere microbial succession trajectories are cogoverned by both deterministic and random processes.IMPORTANCE Disentangling the mechanisms shaping bacterioplankton communities during a marine ecological event is a core concern for ecologists. Harmful algal bloom (HAB) is a typical ecological disaster, and its formation is significantly influenced by alga-bacterium interactions. Microbial community shifts during the HAB process are relatively well known. However, the assembly processes of microbial communities in an HAB are not fully understood, especially the relative influences of deterministic and stochastic processes. We therefore analyzed the relative contributions of deterministic and stochastic processes during an HAB event. Both free-living and attached bacterial groups had a dramatic response to the HAB, and the relative importance of determinism versus stochasticity varied between the two bacterial groups at various bloom stages. Environmental factors and biotic interactions were the main drivers impacting the microbial shift process. Our results strengthen the understanding of the ecological mechanisms controlling microbial community patterns during the HAB process.


Assuntos
Organismos Aquáticos/isolamento & purificação , Dinoflagellida/isolamento & purificação , Proliferação Nociva de Algas , Microbiota
13.
Environ Sci Technol ; 53(14): 8381-8388, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31276389

RESUMO

C60 could enhance the accumulation of pollutants in organisms, but their effects on higher trophic levels remain unknown. In the present study, the transfer of C60 from Daphnia magna to zebrafish (Danio rerio) and its effects on Cd transfer were investigated. The results showed that C60 could be transferred from D. magna to zebrafish through dietary exposure and accumulate mainly in the intestines, but biomagnification was not observed. The presence of C60 promoted accumulation of Cd in D. magna. However, it decreased Cd burden in the higher trophic level (zebrafish), displaying an alleviative effect on the trophic transfer of Cd along the food chain. To explore the underlying mechanisms, the release of Cd from D. magna in digestive fluids and changes in zebrafish digestive physiology were further investigated. The results showed that C60 did not inhibit Cd release from D. magna, but stimulated the digestive tracts of zebrafish to excrete Cd earlier and in a greater amount, which consequently lowered assimilation efficiency of Cd in zebrafish. Overall, the present study showed the trophic transfer of C60 in the aquatic food chain and revealed the effects of C60 on trophic transfer of Cd along the food chain in aquatic environment.


Assuntos
Cadeia Alimentar , Poluentes Químicos da Água , Animais , Cádmio , Daphnia , Peixe-Zebra
14.
Microb Ecol ; 76(3): 592-609, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29442157

RESUMO

A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Oceano Atlântico , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Brasil , Mar Mediterrâneo , Filogenia , Água do Mar/química
15.
Environ Sci Technol ; 52(24): 14445-14451, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30486644

RESUMO

Carbon quantum dots (CQDs) have high hydrophilicity, high cell permeability, and are frequently used in water-based and biorelated applications, yet studies concerning the ecological risks of CQDs in aquatic environments are largely insufficient. In the present study, the toxicity of CQDs to zebrafish ( Danio rerio), zooplankton ( Daphnia magna), and phytoplankton ( Scenedesmus obliquus) were assessed for the first time. The results indicated that CQDs (up to 200 mg/L) could be depurated by D. rerio with negligible toxicity. In comparison, CQDs induced mortality and immobility in D. magna with a 48-h EC50 value and LC50 value of 97.5 and 160.3 mg/L, respectively. In S. obliquus, CQDs inhibited photosynthesis and nutrition absorption in a dose- and time-dependent manner, and the growth of algae was also inhibited with a 96-h EC50 value of 74.8 mg/L, suggesting that S. obliquus, the lowest trophic level in this study, was most sensitive to CQDs exposure. Further investigations revealed that CQDs induced an increase in oxidative stress in algae cells and a decrease in pH value of an algae medium, indicating that oxidative stress and water acidification may be the mechanisms underlying the toxicity of CQDs to S. obliquus.


Assuntos
Pontos Quânticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Carbono , Daphnia , Peixe-Zebra
17.
Curr Microbiol ; 74(1): 68-76, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27807655

RESUMO

Marine algae provide a unique niche termed the phycosphere for microorganism inhabitation. The phycosphere environment is an important niche for mutualistic and competitive interactions between algae and bacteria. Quorum sensing (QS) serves as a gene regulatory system in the microbial biosphere that allows bacteria to sense the population density with signaling molecules, such as acyl-homoserine lactone (AHL), and adapt their physiological activities to their surroundings. Understanding the QS system is important to elucidate the interactions between algal-associated microbial communities in the phycosphere condition. In this study, we isolated an epidermal bacterium (ST2) from the marine dinoflagellate Scrippsiella trochoidea and evaluated its AHL production profile. Strain ST2 was classified as a member of the genus Citrobacter closely related to Citrobacter freundii by 16S rRNA gene sequence analysis. Thin-layer chromatography revealed that C. freundii ST2 secreted three active AHL compounds into the culture supernatant. Specific compounds, such as N-butyryl-L-homoserine lactone (C4-AHL), N-octanoyl-DL-homoserine lactone (C8-AHL), and N-decanoyl-DL-homoserine lactone (C10-AHL), were identified by high-resolution tandem mass spectrometry. Carbon metabolic profiling with Biolog EcoPlate™ indicated that C. freundii ST2 was widely used as a carbon source and preferred carbohydrates, amino acids, and carboxylic acids as carbon substrates. Our results demonstrated that C. freundii ST2 is a multi-AHL producer that participates in the phycosphere carbon cycle.


Assuntos
4-Butirolactona/análogos & derivados , Citrobacter freundii/isolamento & purificação , Citrobacter freundii/metabolismo , Dinoflagellida/microbiologia , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Citrobacter freundii/classificação , Citrobacter freundii/genética , Filogenia , Água do Mar/microbiologia , Água do Mar/parasitologia
18.
J Phycol ; 51(1): 120-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986263

RESUMO

Algal blooms are a worldwide phenomenon and the biological interactions that underlie their regulation are only just beginning to be understood. It is established that algal microorganisms associate with many other ubiquitous, oceanic organisms, but the interactions that lead to the dynamics of bloom formation are currently unknown. To address this gap, we used network approaches to investigate the association patterns among microeukaryotes and bacterioplankton in response to a natural Scrippsiella trochoidea bloom. This is the first study to apply network approaches to bloom dynamics. To this end, terminal restriction fragment (T-RF) length polymorphism analysis showed dramatic changes in community compositions of microeukaryotes and bacterioplankton over the blooming period. A variance ratio test revealed significant positive overall associations both within and between microeukaryotic and bacterioplankton communities. An association network generated from significant correlations between T-RFs revealed that S. trochoidea had few connections to other microeukaryotes and bacterioplankton and was placed on the edge. This lack of connectivity allowed for the S. trochoidea sub-network to break off from the overall network. These results allowed us to propose a conceptual model for explaining how changes in microbial associations regulate the dynamics of an algal bloom. In addition, key T-RFs were screened by principal components analysis, correlation coefficients, and network analysis. Dominant T-RFs were then identified through 18S and 16S rRNA gene clone libraries. Results showed that microeukaryotes clustered predominantly with Dinophyceae and Perkinsea while the majority of bacterioplankton identified were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. The ecologi-cal roles of both were discussed in the context of these findings.

19.
Bioresour Technol ; 393: 130077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989417

RESUMO

The effectiveness and associated mechanisms of the biofilm attached cultivation (BAC) under mixotrophy in promoting algal proliferation were investigated. Commercially valuable unicellular microalgae Chromochloris zofingiensis was first used in BAC. Compared with suspended cultivation, the results unequivocally demonstrated the growth benefits of C. zofingiensis cells under BAC with high biomass productivity of 8.53 g m-2 d-1. The physiological and transcriptomic data revealed that the augmented biomass yield was attributable to larger cell size, higher accumulation of chemical substances, significantly upregulated carbon fixation pathway, and greater energy supply efficiency. Here, BAC acts as a "cage" was proposed. Specifically, cells allocate less energy toward mobility, directing a higher share toward growth and production due to their immobilized lifestyle. These findings provide novel insights for optimizing cultivation strategies for commercially valuable algal species and offer a novel perspective from microalgae physiological on understanding higher biomass yield in BAC.


Assuntos
Microalgas , Microalgas/metabolismo , Biomassa , Biofilmes
20.
J Hazard Mater ; 467: 133709, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330650

RESUMO

Microplastics (MPs) from the incomplete degradation of agricultural mulch can stress the effectiveness of biofertilizers and ultimately affect the rhizosphere environment of crops. Yet, the involved mechanisms are poorly known and robust empirical data is generally lacking. Here, conventional polyethylene (PE) MPs and poly(butylene adipate-co-butylene terephthalate) (PBAT) / poly(lactic acid) (PLA) biodegradable MPs (PBAT-PLA BioMPs) were investigated to assess their potential impact on the rhizosphere environment of Brassica parachinensis in the presence of Bacillus amyloliquefaciens biofertilizer. The results revealed that both MPs caused different levels of inhibited crop both above- and belowground crop biomass (up to 50.11% and 57.09%, respectively), as well as a significant decrease in plant height (up to 48.63% and 25.95%, respectively), along with an imbalance of microbial communities. Transcriptomic analyses showed that PE MPs mainly affected root's vitamin metabolism, whereas PBAT-PLA BioMPs mainly interfered with the lipid's enrichment. Metabolomic analyses further indicated that PE MPs interfered with amino acid synthesis that involved in crops' oxidative stress, and that PBAT-PLA BioMPs mainly affected the pathways associated with root growth. Additionally, PBAT-PLA BioMPs had a bigger ecological negative impact than did PE MPs, as evidenced by more pronounced alterations in root antioxidant abilities, a higher count of identified differential metabolites, more robust interrelationships among rhizosphere parameters, and a more intricate pattern of impacts on rhizosphere metrics. This study highlights the MPs' impact on crop rhizosphere in a biofertilizer environment from a rhizosphere multi-omics perspective, and has theoretical implications for scientific application of biofertilizers.


Assuntos
Microplásticos , Multiômica , Plásticos , Rizosfera , Polietileno , Produtos Agrícolas , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA