Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioorg Med Chem ; 25(15): 3900-3910, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602669

RESUMO

Metastatic melanoma still remains one the most difficult cancers to overcome. The aim of our research was the design of anti-tumour triazene compounds 3 for application to a melanoma-specific therapy. The strategy exploits the unique enzyme pathway of melanin biosynthesis for conversion of non-toxic prodrugs into toxic drugs in the melanoma cell. The compounds 3 were designed by coupling two active moieties, the alkylating triazenes and different tyrosinase substrates. All compounds 3 revealed to be chemically stable in isotonic phosphate buffer (PBS) at physiologic pH (t½≥48h), and most of them showed to be slowly hydrolysed in human plasma (1.5≤t½ (h)≤161). Compounds 3c-n revealed to be excellent tyrosinase substrates (0.74≤t½ (min)≤6) with the best tyrosinase substrate 3l releasing MMT 45s after tyrosinase activation. Structure-activity relationship studies allowed the identification of the better structural features for enzyme affinity. Furthermore, the derivatives 3l and 3m showed cell selectivity with significant cytotoxic effects (IC50 values of 46-65µM) against melanoma cell lines with tyrosinase overexpression MNT-1 and B16F10.


Assuntos
Antineoplásicos/farmacologia , Melanoma/patologia , Triazenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Camundongos , Triazenos/química
2.
Nanomedicine ; 11(7): 1851-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169150

RESUMO

Treatment of intracellular infections such as those caused by Mycobacterium spp. and Leishmania spp. is often hampered by limited access of drugs to infected cells. This is the case of paromomycin (PRM), an antibiotic with broad spectrum in vitro activity against protozoa and mycobacteria. Association of chemotherapeutics to liposomes is a worthy strategy to circumvent poor drug accessibility. Six different PRM liposomal formulations were produced, physicochemically characterized and biologically evaluated in a macrophagic cell line confirming their adequacy for in vivo studies. Biodistribution profiles of PRM liposomes revealed preferential targeting of the antibiotic to the liver, spleen and lungs, relative to free PRM, which translated into an enhanced therapeutic effect in murine models infected with Mycobacterium avium and Leishmania infantum and an absence of toxic effects. Our findings demonstrate the advantages of associating PRM to liposomes indicating their potential as an alternative therapeutic strategy for mycobacterial and parasite infections. FROM THE CLINICAL EDITOR: Infections caused by intracellular organisms such as Mycobacterium and Leishmania remain a significant problem worldwide. Although effective drugs are available, their actions are limited by access into the intracellular compartment. In this article, the authors developed different liposomal formulations as drug carriers of paromomycin and investigated their efficacy in a mouse model. The positive should provide another treatment option for these organisms in the near future.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Paromomicina/administração & dosagem , Animais , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Modelos Animais de Doenças , Portadores de Fármacos , Humanos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Lipídeos/administração & dosagem , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Mycobacterium/efeitos dos fármacos , Mycobacterium/patogenicidade , Paromomicina/química , Distribuição Tecidual
3.
J Transl Med ; 11: 18, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23324136

RESUMO

BACKGROUND: ECBio has developed proprietary technology to consistently isolate, expand and cryopreserve a well-characterized population of stromal cells from human umbilical cord tissue (UCX® cells). The technology has recently been optimized in order to become compliant with Advanced Medicine Therapeutic Products. In this work we report the immunosuppressive capacity of UCX® cells for treating induced autoimmune inflammatory arthritis. METHODS: UCX® cells were isolated using a proprietary method (PCT/IB2008/054067) that yields a well-defined number of cells using a precise proportion between tissue digestion enzyme activity units, tissue mass, digestion solution volume and void volume. The procedure includes three recovery steps to avoid non-conformities related to cell recovery. UCX® surface markers were characterized by flow cytometry and UCX® capacity to expand in vitro and to differentiate into adipocyte, chondrocyte and osteoblast-like cells was evaluated. Mixed Lymphocyte Reaction (MLR) assays were performed to evaluate the effect of UCX® cells on T-cell activation and Treg conversion assays were also performed in vitro. Furthermore, UCX® cells were administered in vivo in both a rat acute carrageenan-induced arthritis model and rat chronic adjuvant induced arthritis model for arthritic inflammation. UCX® anti-inflammatory activity was then monitored over time. RESULTS: UCX® cells stained positive for CD44, CD73, CD90 and CD105; and negative for CD14, CD19 CD31, CD34, CD45 and HLA-DR; and were capable to differentiate into adipocyte, chondrocyte and osteoblast-like cells. UCX® cells were shown to repress T-cell activation and promote the expansion of Tregs better than bone marrow mesenchymal stem cells (BM-MSCs). Accordingly, xenogeneic UCX® administration in an acute carrageenan-induced arthritis model showed that human UCX® cells can reduce paw edema in vivo more efficiently than BM-MSCs. Finally, in a chronic adjuvant induced arthritis model, animals treated with intra-articular (i.a.) and intra-peritoneal (i.p.) infusions of UCX® cells showed faster remission of local and systemic arthritic manifestations. CONCLUSION: The results suggest that UCX® cells may be an effective and promising new approach for treating both local and systemic manifestations of inflammatory arthritis.


Assuntos
Artrite Experimental/terapia , Artrite/terapia , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Antígenos CD/imunologia , Artrite Experimental/imunologia , Diferenciação Celular , Proliferação de Células , Citometria de Fluxo , Teste de Cultura Mista de Linfócitos , Masculino , Células-Tronco Mesenquimais/imunologia , Ratos , Ratos Wistar , Cordão Umbilical/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA