Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Pflugers Arch ; 476(7): 1109-1123, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625371

RESUMO

The myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR). Male adult SHR were randomized to sedentary or trained (T: 8-week swimming protocol). Blood pressure and echocardiograms were recorded, and hearts were removed at the end of the training period to perform molecular, imaging, or isolated mitochondria studies. Swimming improved cardiac midventricular shortening and decreased the pathological hypertrophic marker atrial natriuretic peptide. Oxidative stress was reduced, and even more interesting, mitochondrial spatial distribution, dynamics, function, and ATP were significantly improved in the myocardium of T rats. In the signaling pathway triggered by training, we detected an increase in the phosphorylation level of both AKT and glycogen synthase kinase-3 ß, key downstream targets of insulin-like growth factor 1 signaling that are crucially involved in mitochondria biogenesis and integrity. Aerobic exercise training emerges as an effective approach to improve pathological cardiac hypertrophy and bioenergetics in hypertension-induced cardiac hypertrophy.


Assuntos
Mitocôndrias Cardíacas , Condicionamento Físico Animal , Ratos Endogâmicos SHR , Animais , Masculino , Ratos , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Natação/fisiologia , Estresse Oxidativo , Transdução de Sinais/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Pressão Sanguínea/fisiologia , Fator Natriurético Atrial/metabolismo
2.
Exp Mol Pathol ; 107: 1-9, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664842

RESUMO

Chronic activation of the renin angiotensin system (RAS) favors several cardiac diseases, among which myocardial hypertrophy occupies an outstanding place. In this context, the hyperactivity of the cardiac Na+/H+ (NHE-1) exchanger plays a key role. The pathologic remodeling of the myocardium constitutes an independent risk factor for morbidity and mortality with continuously increasing healthcare cost. Therefore, the development of better therapeutic strategies emerges as highly mandatory. Our goal was to prevent angiotensin II (ANGII)-induced cardiac hypertrophy by NHE-1 gene silencing in Wistar rats. The intramyocardial injection of a lentivirus coding a specific small interference RNA (l-shNHE1) significantly reduced NHE-1 expression exclusively in the heart (~ 50%) and prevented cardiac remodeling in rats exposed to chronic infusion of ANG II (heart weigh/tibia length: 24,03 ±â€¯0,7915 mg/mm vs 28,45 ±â€¯0,9779 mg/mm and collagen volume fraction 2526 ±â€¯0,5003 vs 5982 ±â€¯1043 in l-shNHE1 + ANGII and ANGII, respectively). Interestingly, this was accompanied by an improvement in cardiac function determined by echocardiography even though blood pressure remained elevated (Fractional shortening 0,5960 ±â€¯0,4228 vs -0,9567 ±â€¯0,06888 and blood pressure at the end of ANGII treatment 141,2 ±â€¯6117 mmHg vs 134,1 ±â€¯6723 mmHg; in l-shNHE1 + ANGII and ANGII, respectively). ANGII infusion increased myocardial NADPH oxidase activity but the l-shNHE1 injection prevented oxidative stress as revealed by the normalization of lipid peroxidation (T-BARS 12,40 ±â€¯2887.vs 23,05 ±â€¯1537 in l-shNHE1 + ANGII and ANGII, respectively). These results allow as to propose the partial silencing of the cardiac NHE-1 through lentiviral injection as a promising tool in the prevention of ANGII-induced cardiac hypertrophy.


Assuntos
Angiotensina II/metabolismo , Técnicas de Silenciamento de Genes/métodos , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Remodelação Ventricular/fisiologia , Animais , Cardiomegalia/metabolismo , Masculino , Ratos , Ratos Wistar
3.
J Mol Cell Cardiol ; 89(Pt B): 260-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26497404

RESUMO

Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.


Assuntos
Aldosterona/farmacologia , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Masculino , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos
4.
Pflugers Arch ; 466(9): 1819-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24327206

RESUMO

Emerging evidence supports a key role for endothelin-1 (ET-1) and the transactivation of the epidermal growth factor receptor (EGFR) in angiotensin II (Ang II) action. We aim to determine the potential role played by endogenous ET-1, EGFR transactivation and redox-dependent sodium hydrogen exchanger-1 (NHE-1) activation in the hypertrophic response to Ang II of cardiac myocytes. Electrically paced adult cat cardiomyocytes were placed in culture and stimulated with 1 nmol l(-1) Ang II or 5 nmol l(-1) ET-1. Ang II increased ~45 % cell surface area (CSA) and ~37 % [(3)H]-phenylalanine incorporation, effects that were blocked not only by losartan (Los) but also by BQ123 (AT1 and ETA receptor antagonists, respectively). Moreover, Ang II significantly increased ET-1 messenger RNA (mRNA) expression. ET-1 similarly increased myocyte CSA and protein synthesis, actions prevented by the reactive oxygen species scavenger MPG or the NHE-1 inhibitor cariporide (carip). ET-1 increased the phosphorylation of the redox-sensitive ERK1/2-p90(RSK) kinases, main activators of the NHE-1. This effect was prevented by MPG and the antagonist of EGFR, AG1478. Ang II, ET-1 and EGF increased myocardial superoxide production (187 ± 9 %, 149 ± 8 % and 163.7 ± 6 % of control, respectively) and AG1478 inhibited these effects. Interestingly, Los inhibited only Ang II whilst BQ123 cancelled both Ang II and ET-1 actions, supporting the sequential and unidirectional activation of AT1, ETA and EGFR. Based on the present evidence, we propose that endogenous ET-1 mediates the hypertrophic response to Ang II by a mechanism that involves EGFR transactivation and redox-dependent activation of the ERK1/2-p90(RSK) and NHE-1 in adult cardiomyocytes.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Endotelina-1/metabolismo , Receptores ErbB/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Gatos , Modelos Animais de Doenças , Estimulação Elétrica , Hipertrofia/metabolismo , Miócitos Cardíacos/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Ativação Transcricional
5.
J Physiol ; 589(Pt 24): 6051-61, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22174146

RESUMO

The increase in myocardial reactive oxygen species after epidermal growth factor receptor transactivation is a crucial step in the autocrine/paracrine angiotensin II/endothelin receptor activation leading to the slow force response to stretch (SFR). Since experimental evidence suggests a link between angiotensin II or its AT1 receptor and the mineralocorticoid receptor (MR), and MR transactivates the epidermal growth factor receptor, we thought to determine whether MR activation participates in the SFR development in rat myocardium. We show here that MR activation is necessary to promote reactive oxygen species formation by a physiological concentration of angiotensin II (1 nmol l(-1)), since an increase in superoxide anion formation of ~50% of basal was suppressed by blocking MR with spironolactone or eplerenone. This effect was also suppressed by blocking AT1, endothelin (type A) or epidermal growth factor receptors, by inhibiting NADPH oxydase or by targeting mitochondria, and was unaffected by glucocorticoid receptor inhibition. All interventions except AT1 receptor blockade blunted the increase in superoxide anion promoted by an equipotent dose of endothelin-1 (1 nmol l(-1)) confirming that endothelin receptors activation is downstream of AT1. Similarly, an increase in superoxide anion promoted by an equipotent dose of aldosterone (10 nmol l(-1)) was blocked by spironolactone or eplerenone, by preventing epidermal growth factor receptor transactivation, but not by inhibiting glucocorticoid receptors or protein synthesis, suggesting non-genomic MR effects. Combination of aldosterone plus endothelin-1 did not increase superoxide anion formation more than each agonist separately. We found that aldosterone increased phosphorylation of the redox-sensitive kinases ERK1/2-p90RSK and the NHE-1, effects that were eliminated by eplerenone or by preventing epidermal growth factor receptor transactivation. Finally, we provide evidence that the SFR is suppressed by MR blockade, by preventing epidermal growth factor receptor transactivation or by scavenging reactive oxygen species, but it is unaffected by glucocorticoid receptor blockade or protein synthesis inhibition. Our results suggest that MR activation is a necessary step in the stretch-triggered reactive oxygen species-mediated activation of redox-sensitive kinases upstream NHE-1.


Assuntos
Coração/fisiologia , Músculo Liso/fisiologia , Contração Miocárdica/fisiologia , Receptores de Mineralocorticoides/fisiologia , Aldosterona/farmacologia , Angiotensina II/metabolismo , Animais , Endotelina-1/farmacologia , Receptores ErbB/metabolismo , Técnicas In Vitro , Masculino , Mitocôndrias Cardíacas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculos Papilares/fisiologia , Ratos , Ratos Wistar , Receptores de Endotelina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Mecânico , Superóxidos/metabolismo
6.
Cell Physiol Biochem ; 27(1): 13-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21325817

RESUMO

BACKGROUND/AIMS: Flow restoration to ischemic myocardium reduces infarct size (IS), but it also promotes reperfusion injury. A burst of reactive oxygen species (ROS) and/or NHE-1 reactivation were proposed to explain this injury. Our study was aimed to shed light on this unresolved issue. METHODS: Regional infarction (40 min-ischemia/2 hs-reperfusion) was induced in isolated and perfused rat hearts. Maximal doses of N-(2-mercaptopropionyl)-glycine (MPG 2mmol/L, ROS scavenger), cariporide (10µmol/L, NHE-1 inhibitor), or sildenafil (1µmol/L, phosphodiesterase5A inhibitor) were applied at reperfusion onset. Their effects on IS, myocardial concentration of thiobarbituric acid reactive substances (TBARS), ERK1/2, p90(RSK), and NHE-1 phosphorylation were analyzed. RESULTS: All treatments decreased IS ∼ 50% vs. control. No further protection was obtained by combining cariporide or MPG with sildenafil. Myocardial TBARS increased after infarction and were decreased by MPG or cariporide, but unaffected by sildenafil. In line with the fact that ROS induce MAPK-mediated NHE-1 activation, myocardial infarction increased ERK1/2, p90(RSK), and NHE-1 phosphorylation. MPG and cariporide cancelled these effects. Sildenafil did not reduce the phosphorylated ERK1/2-p90(RSK) levels but blunted NHE-1 phosphorylation suggesting a direct dephosphorylating action. CONCLUSIONS: 1) Reperfusion injury would result from ROS-triggered MAPK-mediated NHE-1 phosphorylation (and reactivation) during reperfusion; 2) sildenafil protects the myocardium by favouring NHE-1 dephosphorylation and bypassing ROS generation.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Glicina/análogos & derivados , Glicina/uso terapêutico , Guanidinas/uso terapêutico , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosforilação , Piperazinas/uso terapêutico , Purinas/uso terapêutico , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Citrato de Sildenafila , Compostos de Sulfidrila/uso terapêutico , Sulfonas/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Vasodilatadores/uso terapêutico
7.
Eur J Pharmacol ; 891: 173724, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33152335

RESUMO

Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway. Moreover, treated animals showed a decreased oxidative stress that appears to be a consequence of a decreased mitochondrial NHE1 phosphorylation. Treated SHR showed a significant reduction in the pro-hypertrophic phosphatase calcineurin, despite slight tendency to decrease hypertrophy was detected. When SIL treatment was prolonged to three months, a significant decrease in myocardial hypertrophy and interstitial fibrosis that correlated with a lower myocardial stiffness was observed. In conclusion, the current study provides evidence concerning the ability of SIL to revert established cardiac hypertrophy in SHR, a clinically relevant animal model that resembles human essential hypertension.


Assuntos
Cardiomegalia/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Cardiomegalia/enzimologia , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Fibrose , Hipertensão/complicações , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Músculos Papilares/enzimologia , Músculos Papilares/fisiopatologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Ratos Endogâmicos SHR , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Physiol ; 588(Pt 9): 1579-90, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20231142

RESUMO

Myocardial stretch elicits a biphasic contractile response: the Frank-Starling mechanism followed by the slow force response (SFR) or Anrep effect. In this study we hypothesized that the SFR depends on epidermal growth factor receptor (EGFR) transactivation after the myocardial stretch-induced angiotensin II (Ang II)/endothelin (ET) release. Experiments were performed in isolated cat papillary muscles stretched from 92 to 98% of the length at which maximal twitch force was developed (L(max)). The SFR was 123 +/- 1% of the immediate rapid phase (n = 6, P < 0.05) and was blunted by preventing EGFR transactivation with the Src-kinase inhibitor PP1 (99 +/- 2%, n = 4), matrix metalloproteinase inhibitor MMPI (108 +/- 4%, n = 11), the EGFR blocker AG1478 (98 +/- 2%, n = 6) or the mitochondrial transition pore blocker clyclosporine (99 +/- 3%, n = 6). Stretch increased ERK1/2 phosphorylation by 196 +/- 17% of control (n = 7, P < 0.05), an effect that was prevented by PP1 (124 +/- 22%, n = 7) and AG1478 (131 +/- 17%, n = 4). In myocardial slices, Ang II (which enhances ET mRNA) or endothelin-1 (ET-1)-induced increase in O(2)() production (146 +/- 14%, n = 9, and 191 +/- 17%, n = 13, of control, respectively, P < 0.05) was cancelled by AG1478 (94 +/- 5%, n = 12, and 98 +/- 15%, n = 8, respectively) or PP1 (100 +/- 4%, n = 6, and 99 +/- 8%, n = 3, respectively). EGF increased O(2)() production by 149 +/- 4% of control (n = 9, P < 0.05), an effect cancelled by inhibiting NADPH oxidase with apocynin (110 +/- 6% n = 7), mKATP channels with 5-hydroxydecanoic acid (5-HD; 105 +/- 5%, n = 8), the respiratory chain with rotenone (110 +/- 7%, n = 7) or the mitochondrial permeability transition pore with cyclosporine (111 +/- 10%, n = 6). EGF increased ERK1/2 phosphorylation (136 +/- 8% of control, n = 9, P < 0.05), which was blunted by 5-HD (97 +/- 5%, n = 4), suggesting that ERK1/2 activation is downstream of mitochondrial oxidative stress. Finally, stretch increased Ser703 Na(+)/H(+) exchanger-1 (NHE-1) phosphorylation by 172 +/- 24% of control (n = 4, P < 0.05), an effect that was cancelled by AG1478 (94 +/- 17%, n = 4). In conclusion, our data show for the first time that EGFR transactivation is crucial in the chain of events leading to the Anrep effect.


Assuntos
Receptores ErbB/fisiologia , Mecanorreceptores/fisiologia , Contração Miocárdica/fisiologia , Ativação Transcricional/fisiologia , Angiotensina II/biossíntese , Animais , Gatos , Endotelina-1/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Oxirredução , Músculos Papilares/fisiologia , Fosforilação , RNA/biossíntese , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Superóxidos/metabolismo
9.
J Appl Physiol (1985) ; 106(4): 1325-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19179646

RESUMO

Na(+)/H(+) exchanger (NHE-1) inhibition was demonstrated to induce the regression of cardiac hypertrophy (CH) in several experimental models and to inhibit mitochondrial death pathway in "in-vitro" experiments. Since recent reports show that NHE-1 inhibition delays the transition from CH to failure, and apoptosis plays a key role in this process, we investigated the effect of chronic treatment with the NHE-1 blocker cariporide on CH and apoptosis in the SHR. One month of cariporide treatment (30 mg x kg(-1) x day(-1)) induced the regression of CH (cardiomyocyte cross-sectional area: 468 +/- 20 vs. 285 +/- 9 microm(2) in untreated and cariporide-treated spontaneously hypertensive rats; P < 0.05). Apoptosis was assessed by TUNEL staining, the expression of Bcl-2, Bax, and activation of caspase-3 and PARP-1 by immunoblot. Cariporide treatment decreased the TUNEL-positive cells, the Bax-to-Bcl-2 ratio (3.16 +/- 0.32 vs. 1.70 +/- 0.17, untreated and cariporide-treated, respectively; P < 0.05); caspase-3 and PARP-1 activation (465 +/- 62 vs. 260 +/- 22 and 2,239 +/- 62 vs. 1,683 +/- 85 AU, untreated and cariporide-treated, respectively; P < 0.05). Angiotensin II, a growth factor and apoptotic stimulus, was used to induce O(2)(-) production that activated the ERK1/2-p90(RSK) pathway, increasing NHE-1 phosphorylation. These effects were prevented by losartan, N-(2-mercaptopropionyl)-glycine, and cariporide. In conclusion, we present data demonstrating that chronic NHE-1 inhibition with cariporide decreases both hypertrophy and apoptosis susceptibility in the spontaneously hypertensive rat heart. The antiapoptotic effect would be the consequence of two different actions of cariporide: the prevention of cytosolic Na(+) and Ca(2+) overload due to the inhibition of the sarcolemmal NHE-1 and a direct mitochondrial effect preventing mitochondrial permeability transition pore opening.


Assuntos
Antiarrítmicos/uso terapêutico , Apoptose/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Guanidinas/uso terapêutico , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/uso terapêutico , Angiotensina II/farmacologia , Animais , Western Blotting , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Marcação In Situ das Extremidades Cortadas , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Endogâmicos SHR , Trocador 1 de Sódio-Hidrogênio , Superóxidos/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Biochem Pharmacol ; 170: 113667, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31622577

RESUMO

Pathological cardiac hypertrophy (PCH) can be triggered by epidermal growth factor receptor (EGFR) transactivation. Progression of PCH can be prevented by inhibition of hyperactive Na+/H+ exchanger isoform 1 (NHE1). We first aimed, to limit PCH of spontaneously hypertensive rats (SHR) by specific and localized silencing of cardiac EGFR, and second to study the connection of its activation pathway with cardiac NHE1 activity. Short hairpin RNA (shRNA) against EGFR was delivered with a lentivirus (l-shEGFR) in the cardiac left ventricle (LV) wall. Protein expression was analyzed by immunoblots, and NHE1 activity was indirectly measured in isolated papillary muscles by rate of pHi recovery from transient acidification. EGFR protein expression in the LV was reduced compared to the group injected with l-shSCR (Scrambled sequence) without changes in ErbB2 or ErbB4. Hypertrophic parameters together with cardiomyocytes cross sectional area were reduced in animals injected with l-shEGFR. Echocardiographic analysis exhibited a reduced fractional shortening in the l-shSCR group 30 days following treatment that was not observed in l-shEGFR group. l-shEGFR treated rats presented a reduced basal production of reactive oxygen species and decreased lipid peroxidation. NHE1 activity was significantly diminished in hearts with a partial EGFR silencing, without modification of its protein expression. We conclude that specifically silencing cardiac EGFR expression prevents progression of PCH through a pathway that involves a decrease in the NHE1 activity. Lentiviral vectors prove to be a valuable tool for long term expression of shRNA, bringing the possibility to extend its use in clinical area.


Assuntos
Cardiomegalia/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Inativação Gênica/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Cardiomegalia/patologia , Receptores ErbB/antagonistas & inibidores , Células HEK293 , Humanos , Masculino , Ratos , Ratos Endogâmicos SHR , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores
11.
Front Biosci ; 13: 7096-114, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508719

RESUMO

The enhanced activity of the cardiac Na+/H+ exchanger (NHE-1) after myocardial stretch is considered a key step of the intracellular signaling pathway leading to the slow force response to stretch as well as an early signal for the development of cardiac hypertrophy. We propose that the chain of events triggered by stretch begins with the release of small amounts of Angiotensin II (Ang II)/endothelin (ET) and ends with the increase in intracellular Ca2+ concentration ([Ca2+]i) through the Na+/Ca2+ exchanger in reverse mode (NCX(rev)), which triggers cardiac hypertrophy by activation of widely recognized Ca2+-dependent intracellular signaling pathways.


Assuntos
Cardiomegalia/fisiopatologia , Trocadores de Sódio-Hidrogênio/fisiologia , Adulto , Angiotensina II/fisiologia , Fenômenos Biomecânicos , Cardiomegalia/genética , Ventrículos do Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Direita/fisiopatologia , Obesidade/genética , Pressorreceptores/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Função Ventricular
12.
J Appl Physiol (1985) ; 105(6): 1706-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18801963

RESUMO

The possibility of a direct mitochondrial action of Na(+)/H(+) exchanger-1 (NHE-1) inhibitors decreasing reactive oxygen species (ROS) production was assessed in cat myocardium. Angiotensin II and endothelin-1 induced an NADPH oxidase (NOX)-dependent increase in anion superoxide (O(2)(-)) production detected by chemiluminescence. Three different NHE-1 inhibitors [cariporide, BIIB-723, and EMD-87580] with no ROS scavenger activity prevented this increase. The mitochondria appeared to be the source of the NOX-dependent ROS released by the "ROS-induced ROS release mechanism" that was blunted by the mitochondrial ATP-sensitive potassium channel blockers 5-hydroxydecanoate and glibenclamide, inhibition of complex I of the electron transport chain with rotenone, and inhibition of the permeability transition pore (MPTP) by cyclosporin A. Cariporide also prevented O(2)(-) production induced by the opening of mK(ATP) with diazoxide. Ca(2+)-induced swelling was evaluated in isolated mitochondria as an indicator of MPTP formation. Cariporide decreased mitochondrial swelling to the same extent as cyclosporin A and bongkrekic acid, confirming its direct mitochondrial action. Increased O(2)(-) production, as expected, stimulated ERK1/2 and p90 ribosomal S6 kinase phosphorylation. This was also prevented by cariporide, giving additional support to the existence of a direct mitochondrial action of NHE-1 inhibitors in preventing ROS release. In conclusion, we report a mitochondrial action of NHE-1 inhibitors that should lead us to revisit or reinterpret previous landmark observations about their beneficial effect in several cardiac diseases, such as ischemia-reperfusion injury and cardiac hypertrophy and failure. Further studies are needed to clarify the precise mechanism and site of action of these drugs in blunting MPTP formation and ROS release.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Superóxidos/metabolismo , Angiotensina II/farmacologia , Animais , Antiarrítmicos/farmacologia , Cloreto de Cálcio/farmacologia , Gatos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Guanidinas/farmacologia , Técnicas In Vitro , Mitocôndrias Cardíacas/efeitos dos fármacos , Dilatação Mitocondrial/efeitos dos fármacos , NADPH Oxidases/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sulfonas/farmacologia
13.
Food Funct ; 7(2): 816-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26661577

RESUMO

Tea made from Ilex paraguariensis (IP) dried and minced leaves is a beverage widely consumed by large populations in South America as a source of caffeine (stimulant action) and for its medicinal properties. However, there is little information about the action of IP on the myocardium in the ischemia-reperfusion condition. Therefore, the objective of this study was to examine the effects of an aqueous extract of IP on infarct size in a model of regional ischemia. Isolated rat hearts were perfused by the Langendorff technique and subjected to 40 min of coronary artery occlusion followed by 60 min of reperfusion (ischemic control hearts). Other hearts received IP 30 µg mL(-1) during the first 10 min of reperfusion in the absence or presence of l(G)-nitro-l-arginine methyl ester [l-NAME, a nitric oxide synthase (NOS) inhibitor]. The infarct size was determined by triphenyltetrazolium chloride (TTC) staining. Post-ischemic myocardial function and coronary perfusion were also assessed. Cardiac oxidative damage was evaluated by using the thiobarbituric acid reactive substance (TBARS) concentration and the reduced glutathione (GSH) content. To analyze the mechanisms involved, the expressions of phosphorylated forms of eNOS and Akt were measured. In isolated mitochondria the Ca(2+)-induced mitochondrial permeability transition pore (mPTP) opening was determined. IP significantly decreased the infarct size and improved post-ischemic myocardial function and coronary perfusion. TBARS decreased, GSH was partially preserved, the levels of P-eNOS and P-Akt increased and mPTP opening diminished after IP addition. These changes were abolished by l-NAME. Therefore, our data demonstrate that acute treatment with IP only during reperfusion was effective in reducing myocardial post-ischemic alterations. These actions would be mediated by a decrease of mitochondrial permeability through IP-activated Akt/eNOS-dependent pathways.


Assuntos
Coração/efeitos dos fármacos , Ilex paraguariensis/química , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Extratos Vegetais/farmacologia , Animais , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Masculino , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Wistar
14.
J Am Heart Assoc ; 5(10)2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27744404

RESUMO

BACKGROUND: Myocardial stretch increases force biphasically: the Frank-Starling mechanism followed by the slow force response (SFR). Based on pharmacological strategies, we proposed that epidermal growth factor (EGF) receptor (EGFR or ErbB1) activation is crucial for SFR development. Pharmacological inhibitors could block ErbB4, a member of the ErbB family present in the adult heart. We aimed to specifically test the role of EGFR activation after stretch, with an interference RNA incorporated into a lentiviral vector (small hairpin RNA [shRNA]-EGFR). METHODS AND RESULTS: Silencing capability of p-shEGFR was assessed in EGFR-GFP transiently transfected HEK293T cells. Four weeks after lentivirus injection into the left ventricular wall of Wistar rats, shRNA-EGFR-injected hearts showed ≈60% reduction of EGFR protein expression compared with shRNA-SCR-injected hearts. ErbB2 and ErbB4 expression did not change. The SFR to stretch evaluated in isolated papillary muscles was ≈130% of initial rapid phase in the shRNA-SCR group, while it was blunted in shRNA-EGFR-expressing muscles. Angiotensin II (Ang II)-dependent Na+/H+ exchanger 1 activation was indirectly evaluated by intracellular pH measurements in bicarbonate-free medium, demonstrating an increase in shRNA-SCR-injected myocardium, an effect not observed in the silenced group. Ang II- or EGF-triggered reactive oxygen species production was significantly reduced in shRNA-EGFR-injected hearts compared with that in the shRNA-SCR group. Chronic lentivirus treatment affected neither the myocardial basal redox state (thiobarbituric acid reactive substances) nor NADPH oxidase activity or expression. Finally, Ang II or EGF triggered a redox-sensitive pathway, leading to p90RSK activation in shRNA-SCR-injected myocardium, an effect that was absent in the shRNA-EGFR group. CONCLUSIONS: Our results provide evidence that specific EGFR activation after myocardial stretch is a key factor in promoting the redox-sensitive kinase activation pathway, leading to SFR development.


Assuntos
Receptores ErbB/genética , Coração/fisiopatologia , Miocárdio/metabolismo , Angiotensina II/farmacologia , Animais , Receptores ErbB/metabolismo , Inativação Gênica , Proteínas de Fluorescência Verde , Células HEK293 , Coração/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Masculino , RNA Interferente Pequeno , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Vasoconstritores/farmacologia
15.
Cardiovasc Pathol ; 24(4): 236-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25670255

RESUMO

BACKGROUND: Reactive oxygen species, such as superoxide, are being increasingly recognized as key components of a vast array of signaling pathways. Angiotensin II is a well-recognized stimulus for superoxide production through NADPH oxidase activation and opening of the mitochondrial ATP-sensitive potassium channels (mKATP). A role for this mechanism has been proposed to explain several physiological effects of the peptide. The aim of this study was to evaluate the involvement of this mechanism in the inotropic response to 100nmol/L angiotensin II. METHODS: Sarcomere shortening and intracellular pH (BCECF-epifluorescence technique) were evaluated in isolated cat ventricular myocytes placed in a perfusion chamber on the stage of an inverted microscope. Myocardial superoxide production was evaluated by the lucigenin quimioluminiscence method. RESULTS: Angiotensin II (100nmol/L) increased~70% sarcomere shortening, effect that was only partially prevented by NADPH oxidase inhibition, mKATP channel blockade or inhibition of the cardiac Na(+)/H(+) exchanger (NHE-1). Moreover, angiotensin II stimulates NHE-1 activity by a NADPH oxidase-dependent mechanism. Myocardial superoxide production was also increased by angiotensin II, and this action was completely prevented either by NADPH oxidase inhibition or mKATP channel blockade. CONCLUSIONS: The positive inotropic response to 100nmol/L angiotensin II is due to both ROS/NHE-1 dependent and independent pathways, this being a point of divergence with the signaling previously described to be triggered by lower concentrations of angiotensin II (i.e.: 1nmol/L).


Assuntos
Angiotensina II/farmacologia , Cardiotônicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Gatos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Ventrículos do Coração/metabolismo , Concentração de Íons de Hidrogênio , Miócitos Cardíacos/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo
16.
Metabolism ; 53(3): 382-7, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15015152

RESUMO

To investigate the mechanisms that cause insulin resistance in hypertension, experiments were performed to study the effect of insulin on glucose transport, GLUT-4 translocation from intracellular to plasma membranes and GLUT-4 phosphorylation in isolated adipocytes from normotensive Wistar (W) and spontaneously hypertensive rats (SHR). Glucose transport was measured in adipocytes incubated with 3-O-d[Methyl-(3)H] glucose with and without insulin (0.1 to 5 nmol/L). GLUT-4 protein was determined by Western blot immunoanalysis with GLUT-4 antibody. Phosphorylation of GLUT-4 was measured by immunoprecipitation with GLUT-4 antibody followed by immunoanalysis with phosphoserine or phosphothreonine antibodies. Compared with adipocytes from W, insulin-stimulated glucose transport was lower in the SHR (P <.05). GLUT-4 protein expression was similar in adipocytes from W and SHR. Insulin increased GLUT-4 translocation from intracellular to plasma membranes in both groups. This effect was lower in the SHR (P <.05). The effect of insulin on GLUT-4 serine phosphorylation showed no changes in plasma membranes from W and decreased in the SHR (P <.05). In intracellular membranes, insulin increased specific GLUT-4 serine phosphorylation in both groups (P <.05), but the increase was lower in the SHR (P <.05). The results suggest that a deficient GLUT-4 translocation to plasma membranes in response to insulin shown in adipocytes from SHR, which was accompanied by a decrease in GLUT-4 phosphorylation at serine site, could be one of the causes of insulin resistance in hypertension.


Assuntos
Adipócitos/fisiologia , Hipertensão/metabolismo , Resistência à Insulina/fisiologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Adipócitos/metabolismo , Animais , Western Blotting , Separação Celular , Eletroforese em Gel de Poliacrilamida , Transportador de Glucose Tipo 4 , Masculino , Fosforilação , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Frações Subcelulares/metabolismo
17.
Cardiovasc Res ; 101(2): 211-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24253522

RESUMO

AIMS: Electroneutral (NBCn1) and electrogenic (NBCe1) isoforms of the Na(+)-HCO3(-) cotransporter (NBC) coexist in the heart. We studied the expression and function of these isoforms in hearts of Wistar and spontaneously hypertensive rats (SHR), elucidating the direct implication of the renin-angiotensin system in the NBC regulation. METHODS AND RESULTS: We used myocytes from Wistar, SHR, losartan-treated SHR (Los-SHR), and Angiotensin II (Ang II)-induced cardiac hypertrophy. We found an overexpression of NBCe1 and NBCn1 proteins in SHR that was prevented in Los-SHR. Hyperkalaemic-induced pHi alkalization was used to study selective activation of NBCe1. Despite the increase in NBCe1 expression, its activity was lower in SHR than in Wistar or Los-SHR. Similar results were found in Ang II-induced hypertrophy. A specific inhibitory antibody against NBCe1 allowed the discrimination between NBCe1 and NBCn1 activity. Whereas in SHR most of the pHi recovery was due to NBCn1 stimulation, in Wistar and Los-SHR the activity of both isoforms was equitable, suggesting that the deteriorated cardiac NBCe1 function observed in SHR is compensated by an enhanced activity of NBCn1. Using the biotin method, we observed greater level of internalized NBCe1 protein in SHR than in the non-hypertophic groups, while with immunofluorescence we localized the protein in endosomes near the nucleus only in SHR. CONCLUSIONS: We conclude that Ang II is responsible for the impairment of the NBCe1 in hypertrophied hearts. This is due to retained transporter protein units in early endosomes. Moreover, NBCn1 activity seems to be increased in the hypertrophic myocardium of SHR, compensating impaired function of NBCe1.


Assuntos
Bicarbonatos/metabolismo , Cardiomegalia/metabolismo , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Sistema Renina-Angiotensina , Sarcolema/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Compostos de Amônio/metabolismo , Angiotensina II , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Modelos Animais de Doenças , Regulação para Baixo , Endossomos/metabolismo , Concentração de Íons de Hidrogênio , Hiperpotassemia/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Losartan/farmacologia , Masculino , Miócitos Cardíacos/patologia , Potássio/metabolismo , Transporte Proteico , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Sistema Renina-Angiotensina/efeitos dos fármacos , Sarcolema/patologia , Fatores de Tempo
18.
Hypertension ; 63(1): 112-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24126173

RESUMO

Myocardial stretch triggers an angiotensin II-dependent autocrine/paracrine loop of intracellular signals, leading to reactive oxygen species-mediated activation of redox-sensitive kinases. Based on pharmacological strategies, we previously proposed that mineralocorticoid receptor (MR) is necessary for this stretch-triggered mechanism. Now, we aimed to test the role of MR after stretch by using a molecular approach to avoid secondary effects of pharmacological MR blockers. Small hairpin interference RNA capable of specifically knocking down the MR was incorporated into a lentiviral vector (l-shMR) and injected into the left ventricular wall of Wistar rats. The same vector but expressing a nonsilencing sequence (scramble) was used as control. Lentivirus propagation through the left ventricle was evidenced by confocal microscopy. Myocardial MR expression, stretch-triggered activation of redox-sensitive kinases (ERK1/2-p90(RSK)), the consequent Na(+)/H(+) exchanger-mediated changes in pHi (HEPES-buffer), and its mechanical counterpart, the slow force response, were evaluated. Furthermore, reactive oxygen species production in response to a low concentration of angiotensin II (1.0 nmol/L) or an equipotent concentration of epidermal growth factor (0.1 µg/mL) was compared in myocardial tissue slices from both groups. Compared with scramble, animals transduced with l-shMR showed (1) reduced cardiac MR expression, (2) cancellation of angiotensin II-induced reactive oxygen species production but preservation of epidermal growth factor-induced reactive oxygen species production, (3) cancellation of stretch-triggered increase in ERK1/2-p90(RSK) phosphorylation, (4) lack of stretch-induced Na(+)/H(+) exchanger activation, and (5) abolishment of the slow force response. Our results provide strong evidence that MR activation occurs after myocardial stretch and is a key factor to promote redox-sensitive kinase activation and their downstream consequences.


Assuntos
Miocárdio/metabolismo , Receptores de Mineralocorticoides/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Vetores Genéticos , Coração/fisiologia , Lentivirus , Masculino , Mitocôndrias/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Trocador 1 de Sódio-Hidrogênio
19.
Hypertension ; 58(5): 912-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22016493

RESUMO

The use of antagonists of the mineralocorticoid receptor in the treatment of myocardial hypertrophy and heart failure has gained increasing importance in the last years. The cardiac Na(+)/H(+) exchanger (NHE-1) upregulation induced by aldosterone could account for the genesis of these pathologies. We tested whether aldosterone-induced NHE-1 stimulation involves the transactivation of the epidermal growth factor receptor (EGFR). Rat ventricular myocytes were used to measure intracellular pH with epifluorescence. Aldosterone enhanced the NHE-1 activity. This effect was canceled by spironolactone or eplerenone (mineralocorticoid receptor antagonists), but not by mifepristone (glucocorticoid receptor antagonist) or cycloheximide (protein synthesis inhibitor), indicating that the mechanism is mediated by the mineralocorticoid receptor triggering nongenomic pathways. Aldosterone-induced NHE-1 stimulation was abolished by the EGFR kinase inhibitor AG1478, suggesting that is mediated by transactivation of EGFR. The increase in the phosphorylation level of the kinase p90(RSK) and NHE-1 serine703 induced by aldosterone was also blocked by AG1478. Exogenous epidermal growth factor mimicked the effects of aldosterone on NHE-1 activity. Epidermal growth factor was also able to increase reactive oxygen species production, and the epidermal growth factor-induced activation of the NHE-1 was abrogated by the reactive oxygen species scavenger N-2-mercaptopropionyl glycine, indicating that reactive oxygen species are participating as signaling molecules in this mechanism. Aldosterone enhances the NHE-1 activity via transactivation of the EGFR, formation of reactive oxygen species, and phosphorylation of the exchanger. These results call attention to the consideration of the EGFR as a new potential therapeutic target of the cardiovascular pathologies involving the participation of aldosterone.


Assuntos
Aldosterona/farmacologia , Receptores ErbB/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Animais , Células Cultivadas , Receptores ErbB/genética , Modelos Animais , Miócitos Cardíacos/metabolismo , Fosforilação/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Superóxidos/metabolismo , Ativação Transcricional
20.
J Physiol ; 584(Pt 3): 895-905, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17823205

RESUMO

When the length of the myocardium is increased, a biphasic response to stretch occurs involving an initial rapid increase in force followed by a delayed slow increase called the slow force response (SFR). Confirming previous findings involving angiotensin II in the SFR, it was blunted by AT1 receptor blockade (losartan). The SFR was accompanied by an increase in reactive oxygen species (ROS) of approximately 30% and in intracellular Na(+) concentration ([Na(+)](i)) of approximately 2.5 mmol l(-1) over basal detected by H(2)DCFDA and SBFI fluorescence, respectively. Abolition of ROS by 2-mercapto-propionyl-glycine (MPG) and EUK8 suppressed the increase in [Na(+)](i) and the SFR, which were also blunted by Na(+)/H(+) exchanger (NHE-1) inhibition (HOE642). NADPH oxidase inhibition (apocynin or DPI) or blockade of the ATP-sensitive mitochondrial potassium channels (5HD or glybenclamide) suppressed both the SFR and the increase in [Na(+)](i) after stretch, suggesting that endogenous angiotensin II activated NADPH oxidase leading to ROS release by the ATP-sensitive mitochondrial potassium channels, which promoted NHE-1 activation. Supporting the notion of ROS-mediated NHE-1 activation, stretch increased the ERK1/2 and p90rsk kinases phosphorylation, effect that was cancelled by losartan. In agreement, the SFR was cancelled by inhibiting the ERK1/2 signalling pathway with PD98059. Angiotensin II at a dose that mimics the SFR (1 nmol l(-1)) induced an increase in .O(2)(-) production of approximately 30-40% detected by lucigenin in cardiac slices, an effect that was blunted by losartan, MPG, apocynin, 5HD and glybenclamide. Taken together the data suggest a pivotal role of mitochondrial ROS in the genesis of the SFR to stretch.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Músculos Papilares/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Gatos , Mecanotransdução Celular , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA