Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 16(4): 478-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23346919

RESUMO

Biotic interactions can shape phylogenetic community structure (PCS). However, we do not know how the asymmetric effects of foundation species on communities extend to effects on PCS. We assessed PCS of alpine plant communities around the world, both within cushion plant foundation species and adjacent open ground, and compared the effects of foundation species and climate on alpha (within-microsite), beta (between open and cushion) and gamma (open and cushion combined) PCS. In the open, alpha PCS shifted from highly related to distantly related with increasing potential productivity. However, we found no relationship between gamma PCS and climate, due to divergence in phylogenetic composition between cushion and open sub-communities in severe environments, as demonstrated by increasing phylo-beta diversity. Thus, foundation species functioned as micro-refugia by facilitating less stress-tolerant lineages in severe environments, erasing a global productivity - phylogenetic diversity relationship that would go undetected without accounting for this important biotic interaction.


Assuntos
Ecossistema , Filogenia , Fenômenos Fisiológicos Vegetais , Ásia , Europa (Continente) , Nova Zelândia , América do Norte , América do Sul
2.
Science ; 290(5491): 521-3, 2000 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-11039934

RESUMO

Invading exotic plants are thought to succeed primarily because they have escaped their natural enemies, not because of novel interactions with their new neighbors. However, we find that Centaurea diffusa, a noxious weed in North America, has much stronger negative effects on grass species from North America than on closely related grass species from communities to which Centaurea is native. Centaurea's advantage against North American species appears to be due to differences in the effects of its root exudates and how these root exudates affect competition for resources. Our results may help to explain why some exotic species so successfully invade natural plant communities.


Assuntos
Asteraceae/fisiologia , Ecossistema , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Adaptação Fisiológica , Análise de Variância , Ásia , Asteraceae/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Europa (Continente) , América do Norte , Radioisótopos de Fósforo/metabolismo , Poaceae/metabolismo , Solo
3.
Sci Total Environ ; 554-555: 276-92, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26956175

RESUMO

Sea-level rise associated with climate change presents a major challenge to plant diversity and ecosystem service provision in coastal wetlands. In this study, we investigate the effect of sea-level rise on benthos, vegetation, and ecosystem diversity in a tidal wetland in west Wales, the UK. Present relationships between plant communities and environmental variables were investigated through 50 plots at which vegetation (species and coverage), hydrological (surface or groundwater depth, conductivity) and soil (matrix chroma, presence or absence of mottles, organic content, particle size) data were collected. Benthic communities were sampled at intervals along a continuum from saline to freshwater. To ascertain future changes to the wetlands' hydrology, a GIS-based empirical model was developed. Using a LiDAR derived land surface, the relative effect of peat accumulation and rising sea levels were modelled over 200 years to determine how frequently portions of the wetland will be inundated by mean sea level, mean high water spring and mean high water neap conditions. The model takes into account changing extents of peat accumulation as hydrological conditions alter. Model results show that changes to the wetland hydrology will initially be slow. However, changes in frequency and extent of inundation reach a tipping point 125 to 175 years from 2010 due to the extremely low slope of the wetland. From then onwards, large portions of the wetland become flooded at every flood tide and saltwater intrusion becomes more common. This will result in a reduction in marsh biodiversity with plant communities switching toward less diverse and occasionally monospecific communities that are more salt tolerant. While the loss of tidal freshwater wetland is in line with global predictions, simulations suggest that in the Teifi marshes the loss will be slow at first, but then rapid. While there will be a decrease in biodiversity, the model indicated that at least for one ecosystem service, carbon storage, there is potential for an increase in the near future.

4.
Oecologia ; 98(2): 159-166, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28313973

RESUMO

Increases in the concentration of atmospheric carbon dioxide may have a fertilizing effect on plant growth by increasing photosynthetic rates and therefore may offset potential growth decreases caused by the stress associated with higher temperatures and lower precipitation. However, plant growth is determined both by rates of net photosynthesis and by proportional allocation of fixed carbon to autotrophic tissue and heterotrophic tissue. Although CO2 fertilization may enhance growth by increasing leaf-level assimilation rates, reallocation of biomass from leaves to stems and roots in response to higher concentrations of CO2 and higher temperatures may reduce whole-plant assimilation and offset photosynthetic gains. We measured growth parameters, photosynthesis, respiration, and biomass allocation of Pinus ponderosa seedlings grown for 2 months in 2×2 factorial treatments of 350 or 650µ bar CO2 and 10/25° C or 15/30° C night/day temperatures. After 1 month in treatment conditions, total seedling biomass was higher in elevated CO2, and temperature significantly enhanced the positive CO2 effect. However, after 2 months the effect of CO2 on total biomass decreased and relative growth rates did not differ among CO2 and temperature treatments over the 2-month growth period even though photosynthetic rates increased ≈7% in high CO2 treatments and decreased ≈10% in high temperature treatments. Additionally, CO2 enhancement decreased root respiration and high temperatures increased shoot respiration. Based on CO2 exchange rates, CO2 fertilization should have increased relative growth rates (RGR) and high temperatures should have decreased RGR. Higher photosynthetic rates caused by CO2 fertilization appear to have been mitigated during the second month of exposure to treatment conditions by a ≈3% decrease in allocation of biomass to leaves and a ≈9% increase in root:shoot ratio. It was not clear why diminished photosynthetic rates and increased respiration rates at high temperatures did not result in lower RGR. Significant diametrical and potentially compensatory responses of CO2 exchange and biomass allocation and the lack of differences in RGR of ponderosa pine after 2 months of exposure of high CO2 indicate that the effects of CO2 fertilization and temperature on whole-plant growth are determined by complex shifts in biomass allocation and gas exchange that may, for some species, maintain constant growth rates as climate and atmospheric CO2 concentrations change. These complex responses must be considered together to predict plant growth reactions to global atmospheric change, and the potential of forest ecosystems to sequester larger amounts of carbon in the future.

5.
Tree Physiol ; 21(11): 717-25, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11470657

RESUMO

In subalpine forests of the northern Rocky Mountains, fire exclusion has contributed to large-scale shifts from early-successional whitebark pine (Pinus albicaulis Engelm.) to late-successional subalpine fir (Abies lasiocarpa (Hook.) Nutt.), a species assumed to be more shade tolerant than whitebark pine and with leaf to sapwood area ratios (A(L):A(S)) over twice as high. Potential consequences of high A(L):A(S) for subalpine fir include reduced light availability and, if hydraulic sufficiency is maintained, increased whole-tree water use. We measured instantaneous gas exchange, carbon isotope ratios and sap flow of whitebark pine and subalpine fir trees of different sizes in the Sapphire Mountains of western Montana to determine: (1) whether species-specific differences in gas exchange are related to their assumed relative shade tolerance and (2) how differences in A(L):A(S) affect leaf- and whole-tree water use. Whitebark pine exhibited higher photosynthetic rates (A = 10.9 micromol x m(-2) x s(-1) +/- 1.1 SE), transpiration rates (E = 3.8 mmol x m(-2) x s(-1) +/- 0.7 SE), stomatal conductance (g(s) = 166.4 mmol x m(-2) x s(-1) +/- 5.3 SE) and carbon isotope ratios (delta13C = -25.5 per thousand +/- 0.2 SE) than subalpine fir (A = 5.7 micromol x m(-2) x s(-1) +/- 0.9 SE; E = 1.4 mmol x m(-2) x s(-1) +/- 0.3 SE; g(s) = 63.4 mmol x m(-2) x s(-1) +/- 1.2 SE, delta13C = -26.2 per thousand +/- 0.2 SE; P < 0.01 in all cases). Because subalpine fir had lower leaf-area-based sap flow than whitebark pine (QL = 0.33 kgx m(-2) x day(-1) +/- 0.03 SE and 0.76 kg x m(-2) x day(-1) +/- 0.06 SE, respectively; P < 0.001), the higher A(L):A(S) in subalpine fir did not result in direct proportional increases in whole-tree water use, although large subalpine firs used more water than large whitebark pines. The linear relationships between tree size and daily water use (r2 = 0.94 and 0.97 for whitebark pine and subalpine fir, respectively) developed at the Sapphire Mountains site were applied to trees of known size classes measured in 12 natural subalpine stands in the Bob Marshall Wilderness Complex (western Montana) ranging from 67 to 458 years old. Results indicated that the potential for subalpine forests to lose water by transpiration increases as succession proceeds and subalpine fir recruits into whitebark pine stands.


Assuntos
Abies/fisiologia , Pinus/fisiologia , Árvores/fisiologia , Ecossistema , Incêndios , Montana , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Água
6.
Proc Natl Acad Sci U S A ; 88(3): 874-6, 1991 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11607151

RESUMO

Descriptive and experimental studies of desert shrub distributions have revealed important questions about the mechanisms by which plants interact. For example, do roots interact by mechanisms other than simple competition for limiting resources? We investigated this question using the desert shrubs Ambrosia dumosa and Larrea tridentata grown in chambers that allowed observation of roots during intraplant and intra- and interspecific interplant encounters. Two types of root "communication" were revealed. Ambrosia root systems appear to be capable of detecting and avoiding other Ambrosia root systems, whereas Larrea roots inhibit Larrea and Ambrosia roots in their vicinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA