Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12845, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834594

RESUMO

All quantum random number generators based on measuring value indefinite observables are at least three-dimensional because the Kochen-Specker Theorem and the Located Kochen-Specker Theorem are false in dimension two. In this article, we construct quantum random number generators based on measuring a three-dimensional value indefinite observable that generates binary quantum random outputs with the same randomness qualities as the ternary ones: the outputs are maximally unpredictable.

2.
Future Sci OA ; 7(7): FSO733, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34254032

RESUMO

AIM: We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). MATERIALS & METHODS: High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 patients. Predictive models for age, sex and individuality were developed to demonstrate the personalized nature of hematology data. Both numeric and raw flow cytometry data were used for both supervised and unsupervised ML to predict the presence of pneumonia, urinary tract infection and COVID-19. Heart failure was used as an objective to prove method generalizability. RESULTS: Chronological age was predicted by a deep neural network with R2: 0.59; mean absolute error: 12; sex with AUROC: 0.83, phi: 0.47; individuality with 99.7% accuracy, phi: 0.97; pneumonia with AUROC: 0.74, sensitivity 58%, specificity 79%, 95% CI: 0.73-0.75, p < 0.0001; urinary tract infection AUROC: 0.68, sensitivity 52%, specificity 79%, 95% CI: 0.67-0.68, p < 0.0001; COVID-19 AUROC: 0.8, sensitivity 82%, specificity 75%, 95% CI: 0.79-0.8, p = 0.0006; and heart failure area under the receiver operator curve (AUROC): 0.78, sensitivity 72%, specificity 72%, 95% CI: 0.77-0.78; p < 0.0001. CONCLUSION: ML applied to hematology data could predict communicable and noncommunicable diseases, both at local and global levels.

3.
Chaos ; 20(3): 037103, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20887069

RESUMO

Proving the chaoticity of some dynamical systems is equivalent to solving the hardest problems in mathematics. Conversely, classical physical systems may "compute the hard or even the incomputable" by measuring observables which correspond to computationally hard or even incomputable problems.

4.
Prog Biophys Mol Biol ; 131: 469-493, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28818636

RESUMO

Unconventional computing is about breaking boundaries in thinking, acting and computing. Typical topics of this non-typical field include, but are not limited to physics of computation, non-classical logics, new complexity measures, novel hardware, mechanical, chemical and quantum computing. Unconventional computing encourages a new style of thinking while practical applications are obtained from uncovering and exploiting principles and mechanisms of information processing in and functional properties of, physical, chemical and living systems; in particular, efficient algorithms are developed, (almost) optimal architectures are designed and working prototypes of future computing devices are manufactured. This article includes idiosyncratic accounts of 'unconventional computing' scientists reflecting on their personal experiences, what attracted them to the field, their inspirations and discoveries.


Assuntos
Filosofia , Física/métodos , Ocidente
5.
Biosystems ; 77(1-3): 175-94, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15527956

RESUMO

Are there 'biologically computing agents' capable to compute Turing uncomputable functions? It is perhaps tempting to dismiss this question with a negative answer. Quite the opposite, for the first time in the literature on molecular computing we contend that the answer is not theoretically negative. Our results will be formulated in the language of membrane computing (P systems). Some mathematical results presented here are interesting in themselves. In contrast with most speed-up methods which are based on non-determinism, our results rest upon some universality results proved for deterministic P systems. These results will be used for building "accelerated P systems". In contrast with the case of Turing machines, acceleration is a part of the hardware (not a quality of the environment) and it is realised either by decreasing the size of "reactors" or by speeding-up the communication channels. Consequently, two acceleration postulates of biological inspiration are introduced; each of them poses specific questions to biology. Finally, in a more speculative part of the paper, we will deal with Turing non-computability activity of the brain and possible forms of (extraterrestrial) intelligence.


Assuntos
Membrana Celular/fisiologia , Fenômenos Fisiológicos Celulares , Computadores Moleculares , Metodologias Computacionais , Proteínas de Membrana/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA