Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(W1): W495-W502, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718355

RESUMO

Metabolism of an organism is composed of hundreds to thousands of interconnected biochemical reactions responding to environmental or genetic constraints. This metabolic network provides a rich knowledge to contextualize omics data and to elaborate hypotheses on metabolic modulations. Nevertheless, performing this kind of integrative analysis is challenging for end users with not sufficiently advanced computer skills since it requires the use of various tools and web servers. MetExplore offers an all-in-one online solution composed of interactive tools for metabolic network curation, network exploration and omics data analysis. In particular, it is possible to curate and annotate metabolic networks in a collaborative environment. The network exploration is also facilitated in MetExplore by a system of interactive tables connected to a powerful network visualization module. Finally, the contextualization of metabolic elements in the network and the calculation of over-representation statistics make it possible to interpret any kind of omics data. MetExplore is a sustainable project maintained since 2010 freely available at https://metexplore.toulouse.inra.fr/metexplore2/.


Assuntos
Agrobacterium/metabolismo , Disseminação de Informação/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Software , Agrobacterium/genética , Gráficos por Computador , Genômica/métodos , Humanos , Internet , Metabolômica/métodos , Anotação de Sequência Molecular , Proteômica/métodos , Saccharomyces cerevisiae/genética
2.
Front Psychol ; 12: 752650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867645

RESUMO

On March 16, 2020, French schools suddenly closed due to the COVID-19 pandemic, and middle school students were asked to study from home with no direct interactions with teachers or classmates. However, school plays an important role in the development of social, intellectual, and mental competencies and can counteract the negative effects of adverse life events on learning and early school dropout. In this study, we investigated how the unusual context of school closure during the COVID-19 pandemic affected school engagement. Specifically, we focused on inter-individual differences in the motivational determinants of school engagement. We thus performed an online survey of 170 students focusing on the time spent on mathematics assignments, motivation regulation, implicit theories of intelligence, such as adopting a growth or a fixed mindset about his/her intellectual abilities, and optimism. Importantly, the students participated in the online survey during the first lockdown period, with schools closed (T1), and the second lockdown period, with schools remaining open (T2). During T1, identified motivation positively predicted the time spent on math homework assignments: the more the students thought that working on math exercises was useful for their future life, the more time they spent studying. Importantly, the link between identified motivation and school engagement was specific to T1, when schools were closed, as indicated by a significant interaction between identified motivations by type of lockdown. These results suggest that having self-determined motivation is of particular importance when students are deprived of social and intellectual interactions with classmates and teachers. This finding paves the way toward the development of wise rational interventions that target identified motivation and can be applied during challenging societal times and adverse, common life events to keep students engaged with school.

3.
Ecol Evol ; 6(20): 7263-7275, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725396

RESUMO

Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA