Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33384328

RESUMO

Exosomes are emerging as ideal drug delivery vehicles due to their biological origin and ability to transfer cargo between cells. However, rapid clearance of exogenous exosomes from the circulation as well as aggregation of exosomes and shedding of surface proteins during storage limit their clinical translation. Here, we demonstrate highly controlled and reversible functionalization of exosome surfaces with well-defined polymers that modulate the exosome's physiochemical and pharmacokinetic properties. Using cholesterol-modified DNA tethers and complementary DNA block copolymers, exosome surfaces were engineered with different biocompatible polymers. Additionally, polymers were directly grafted from the exosome surface using biocompatible photo-mediated atom transfer radical polymerization (ATRP). These exosome polymer hybrids (EPHs) exhibited enhanced stability under various storage conditions and in the presence of proteolytic enzymes. Tuning of the polymer length and surface loading allowed precise control over exosome surface interactions, cellular uptake, and preserved bioactivity. EPHs show fourfold higher blood circulation time without altering tissue distribution profiles. Our results highlight the potential of precise nanoengineering of exosomes toward developing advanced drug and therapeutic delivery systems using modern ATRP methods.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/química , Engenharia de Proteínas/métodos , Humanos , Polimerização , Polímeros/química , Propriedades de Superfície
2.
Br J Cancer ; 128(9): 1733-1741, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810911

RESUMO

OBJECTIVES: Contributions of TGFß to cancer progression are well documented. However, plasma TGFß levels often do not correlate with clinicopathological data. We examine the role of TGFß carried in exosomes isolated from murine and human plasma as a contributor to disease progression in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: The 4-nitroquinoline-1-oxide (4-NQO) mouse model was used to study changes in TGFß expression levels during oral carcinogenesis. In human HNSCC, TGFß and Smad3 protein expression levels and TGFB1 gene expression were determined. Soluble TGFß levels were evaluated by ELISA and TGFß bioassays. Exosomes were isolated from plasma using size exclusion chromatography, and TGFß content was quantified using bioassays and bioprinted microarrays. RESULTS: During 4-NQO carcinogenesis, TGFß levels in tumour tissues and in serum increased as the tumour progressed. The TGFß content of circulating exosomes also increased. In HNSCC patients, TGFß, Smad3 and TGFB1 were overexpressed in tumour tissues and correlated with increased soluble TGFß levels. Neither TGFß expression in tumours nor levels of soluble TGFß correlated with clinicopathological data or survival. Only exosome-associated TGFß reflected tumour progression and correlated with tumour size. CONCLUSIONS: Circulating TGFß+ exosomes in the plasma of patients with HNSCC emerge as potential non-invasive biomarkers of disease progression in HNSCC.


Assuntos
Biomarcadores Tumorais , Exossomos , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Progressão da Doença , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Biomacromolecules ; 23(4): 1713-1722, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35302760

RESUMO

Exosomes are 30-200 nm sized extracellular vesicles that are increasingly recognized as potential drug delivery vehicles. However, exogenous exosomes are rapidly cleared from the blood upon intravenous delivery, which limits their therapeutic potential. Here, we report bioactive exosome-tethered poly(ethylene oxide)-based hydrogels for the localized delivery of therapeutic exosomes. Using cholesterol-modified DNA tethers, the lipid membrane of exosomes was functionalized with initiators to graft polymers in the presence of additional initiators and crosslinker using photoinduced atom transfer radical polymerization (ATRP). This strategy of tethering exosomes within the hydrogel network allowed their controlled release over a period of 1 month, which was much longer than physically entrapped exosomes. Exosome release profile was tuned by varying the crosslinking density of the polymer network and the use of photocleavable tethers allowed stimuli-responsive release of exosomes. The therapeutic potential of the hydrogels was assessed by evaluating the osteogenic potential of bone morphogenetic protein 2-loaded exosomes on C2C12 and MC3T3-E1 cells. Thus, ATRP-based exosome-tethered hydrogels represent a tunable platform with improved efficacy and an extended-release profile.


Assuntos
Exossomos , Hidrogéis , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/farmacologia , Polimerização , Polímeros/farmacologia
4.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833660

RESUMO

Advancements in electrode technologies to both stimulate and record the central nervous system's electrical activities are enabling significant improvements in both the understanding and treatment of different neurological diseases. However, the current neural recording and stimulating electrodes are metallic, requiring invasive and damaging methods to interface with neural tissue. These electrodes may also degrade, resulting in additional invasive procedures. Furthermore, metal electrodes may cause nerve damage due to their inherent rigidity. This paper demonstrates that novel electrically conductive organic fibers (ECFs) can be used for direct nerve stimulation. The ECFs were prepared using a standard polyester material as the structural base, with a carbon nanotube ink applied to the surface as the electrical conductor. We report on three experiments: the first one to characterize the conductive properties of the ECFs; the second one to investigate the fiber cytotoxic properties in vitro; and the third one to demonstrate the utility of the ECF for direct nerve stimulation in an in vivo rodent model.


Assuntos
Nanotubos de Carbono , Condutividade Elétrica , Estimulação Elétrica , Eletrodos
5.
Pharm Res ; 37(3): 33, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31942659

RESUMO

PURPOSE: Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo. However, to satisfy regulatory requirements and be utilized in clinical applications, cytotoxicity of the base polymers should also be thoroughly characterized. This study systematically investigated the cytotoxicity of several important carbohydrate-based base polymers used for production of MNAs, including carboxymethyl cellulose (CMC), maltodextrin (MD), trehalose (Treh), glucose (Gluc), and hyaluronic acid (HA). METHODS: Each material was evaluated using in vitro cell-culture methods on relevant mouse and human cells, including MPEK-BL6 mouse keratinocytes, NIH-3T3 mouse fibroblasts, HaCaT human keratinocytes, and NHDF human fibroblasts. A common laboratory cell line, human embryonic kidney cells HEK-293, was also used to allow comparisons to various cytotoxicity studies in the literature. Dissolvable MNA materials were evaluated at concentrations ranging from 3 mg/mL to 80 mg/mL. RESULTS: Qualitative and quantitative analyses of cytotoxicity were performed using optical microscopy, confocal fluorescence microscopy, and flow cytometry-based assays for cell morphology, viability, necrosis and apoptosis. Results from different methods consistently demonstrated negligible in vitro cytotoxicity of carboxymethyl cellulose, maltodextrin, trehalose and hyaluronic acid. Glucose was observed to be toxic to cells at concentrations higher than 50 mg/mL. CONCLUSIONS: It is concluded that CMC, MD, Treh, HA, and glucose (at low concentrations) do not pose challenges in terms of cytotoxicity, and thus, are good candidates as MNA materials for creating clinically-relevant and well-tolerated biodissolvable MNAs.


Assuntos
Carboidratos/química , Carboidratos/toxicidade , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/toxicidade , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Glucose/química , Glucose/toxicidade , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/toxicidade , Camundongos , Microinjeções , Agulhas , Preparações Farmacêuticas/química , Polissacarídeos/química , Polissacarídeos/toxicidade , Solubilidade , Trealose/química , Trealose/toxicidade
6.
Wound Repair Regen ; 27(2): 139-149, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576033

RESUMO

Cutaneous wounds caused by an exposure to high doses of ionizing radiation remain a therapeutic challenge. While new experimental strategies for treatment are being developed, there are currently no off-the-shelf therapies for the treatment of cutaneous radiation injury that have been proven to promote repair of the damaged tissues. Plasma-based biomaterials are biologically active biomaterials made from platelet enriched plasma, which can be made into both solid and semi-solid forms, are inexpensive, and are available as off-the-shelf, nonrefrigerated products. In this study, the use of plasma-based biomaterials for the mitigation of acute and late toxicity for cutaneous radiation injury was investigated using a mouse model. A 2-cm diameter circle of the dorsal skin was irradiated with a single dose of 35 Gy followed by topical treatment with plasma-based biomaterial or vehicle once daily for 5 weeks postirradiation. Weekly imaging demonstrated more complete wound resolution in the plasma-based biomaterial vs. vehicle group which became statistically significant (p < 0.05) at weeks 12, 13, and 14 postmaximum wound area. Despite more complete wound healing, at 9 and 17 weeks postirradiation, there was no statistically significant difference in collagen deposition or skin thickness between the plasma-based biomaterial and vehicle groups based on Masson trichrome staining nor was there a statistically significant difference in inflammatory or fibrosis-related gene expression between the groups. Although significant improvement was not observed for late toxicity, plasma-based biomaterials were effective at promoting wound closure, thus helping to mitigate acute toxicity.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Plasma Rico em Plaquetas , Lesões por Radiação/patologia , Lesões por Radiação/terapia , Pele/patologia , Animais , Materiais Biocompatíveis/farmacologia , Análise Custo-Benefício , Modelos Animais de Doenças , Masculino , Camundongos , Cicatrização
7.
J Craniofac Surg ; 30(1): 260-264, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30339591

RESUMO

Bone morphogenetic protein 2 (BMP2) bioprinted on biological matrix induces osseous regeneration in large calvarial defects in rabbits, both uncomplicated and scarred. Healing in unfavorable defects scarred from previous infection is decreased due in part to the lack of vascularity. This impedes the access of mesenchymal stem cells, key to osseous regeneration and the efficacy of BMP2, to the wound bed. The authors hypothesized that bioprinted vascular endothelial growth factor (VEGF) would augment the osseous regeneration achieved with low dose biopatterned BMP2 alone. Thirteen New Zealand white rabbits underwent subtotal calvariectomy using a dental cutting burr. Care was taken to preserve the underlying dura. A 15 mm × 15 mm flap of bone was cut away and incubated in a 1 × 108 cfu/mL planktonic solution of S aureus before reimplantation. After 2 weeks of subsequent infection the flap was removed and the surgical wound debrided followed by 10 days of antibiotic treatment. On postoperative day 42 the calvarial defects were treated with acellular dermal matrix bioprinted with nothing (control), VEGF, BMP2, BMP2/VEGF combined. Bone growth was analyzed with serial CT and postmortem histology. Defects treated with BMP2 (BMP2 alone and BMP2/VEGF combination) showed significantly greater healing than control and VEGF treated defect (P < 0.5). Vascular endothelial growth factor treated defect demonstrated less healing than control and VEGF/BMP2 combination treatments achieved less healing than BMP2 alone though these differences were nonsignificant. Low dose BMP2-patterned acellular dermal matrix improves healing of scarred calvarial defects. Vascular endothelial growth factor at the doses applied in this study failed to increase healing.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Procedimentos de Cirurgia Plástica/métodos , Crânio/cirurgia , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Coelhos , Proteínas Recombinantes/farmacologia
8.
Adv Funct Mater ; 28(20)2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29785178

RESUMO

Critical considerations in engineering biomaterials for rotator cuff repair include bone-tendon-like mechanical properties to support physiological loading and biophysicochemical attributes that stabilize the repair site over the long-term. In this study, UV-crosslinkable polyurethane based on quadrol (Q), hexamethylene diisocyante (H), and methacrylic anhydride (M; QHM polymers), which are free of solvent, catalyst, and photoinitiator, is developed. Mechanical characterization studies demonstrate that QHM polymers possesses phototunable bone- and tendon-like tensile and compressive properties (12-74 MPa tensile strength, 0.6-2.7 GPa tensile modulus, 58-121 MPa compressive strength, and 1.5-3.0 GPa compressive modulus), including the capability to withstand 10 000 cycles of physiological tensile loading and reduce stress concentrations via stiffness gradients. Biophysicochemical studies demonstrate that QHM polymers have clinically favorable attributes vital to rotator cuff repair stability, including slow degradation profiles (5-30% mass loss after 8 weeks) with little-to-no cytotoxicity in vitro, exceptional suture retention ex vivo (2.79-3.56-fold less suture migration relative to a clinically available graft), and competent tensile properties (similar ultimate load but higher normalized tensile stiffness relative to a clinically available graft) as well as good biocompatibility for augmenting rat supraspinatus tendon repair in vivo. This work demonstrates functionally graded, bone-tendon-like biomaterials for interfacial tissue engineering.

9.
Connect Tissue Res ; 59(sup1): 81-90, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29745819

RESUMO

AIM OF THE STUDY: The peripheral nervous system is involved in regulation of bone metabolism via sensory and sympathetic innervation. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two sensory neuropeptides that have been associated with regulation of osteogenic differentiation. However, the interaction between SP and CGRP both with each other and the bone morphogenetic protein 2 (BMP2) in regulation of osteogenic differentiation has not been studied. Therefore, the aim of this study was to investigate the interaction between SP and CGRP on BMP2-induced bone differentiation using model progenitor cells. MATERIALS AND METHODS: C2C12 myoblasts and MC3T3 pre-osteoblasts were treated with SP and CGRP, both individually and in combination, in the presence of BMP2. The effects of the neuropeptides on BMP2-induced osteogenic differentiation were assessed by measuring alkaline phosphatase (ALP) activity, mineralization, and expression of osteogenic markers. RESULTS: Both SP and CGRP enhanced BMP2 signaling, Runx2 mRNA expression, as well as mineralization in vitro. Co-stimulation with SP and CGRP resulted in down-regulation of BMP2-induced bone differentiation, suggesting potential crosstalk between the two neuropeptides in regulation of BMP2 signaling. CONCLUSIONS: Based on the results shown here, CGRP can mitigate augmenting effects of SP on BMP2 signaling and the three pathways potentially converge on Runx2 to regulate BMP2-induced bone differentiation.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Mioblastos/metabolismo , Osteogênese/efeitos dos fármacos , Substância P/farmacologia , Animais , Linhagem Celular , Humanos , Camundongos , Mioblastos/citologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
STAR Protoc ; 4(2): 102154, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917607

RESUMO

Here we present a protocol to engineer apical-out airway organoids (AOAOs) directly from human airway basal stem cells (hABSCs) using suspension culture of hABSC aggregates on a cell-repellent surface. We describe steps to produce spherical AOAOs with homogenous presentation of exterior-facing motile cilia and of tunable sizes. We then detail procedures to analyze AOAO cellular composition via wholemount staining and assess cilia motility via 3D AOAO rotation upon Matrigel embedding. The protocol offers an effective model for investigating human airway pathophysiology. For complete details on the use and execution of this protocol, please refer to Wijesekara et al. (2022).1.

11.
Int J Bioprint ; 9(3): 711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292170

RESUMO

299In Duchenne muscular dystrophy, dystrophic muscle phenotypes are closely associated with the exhaustion of muscle stem cells. Transplantation of muscle stem cells has been widely studied for improving muscle regeneration, but poor cell survival and self-renewal, rapid loss of stemness, and limited dispersion of grafted cells following transplantation have collectively hindered the overall success of this strategy. Optimized mechanisms for maintaining and improving stem cell function are naturally present in the microenvironment of the stem cell niche in healthy muscles. Therefore, one logical strategy toward improving stem cell function and efficiency of stem cell transplantation in diseased muscles would be the establishment of a microenvironment mimicking some key aspects of healthy native stem cell niches. Here, we applied inkjet-based bioprinting technology to engineer a mimicked artificial stem cell niche in dystrophic muscle, comprising stem cell niche regulating factors (Notch activator DLL1) bioprinted onto 3D DermaMatrix construct. The recombinant DLL1 protein, DLL1 (mouse): Fc (human) (rec), was applied here as the Notch activator. Bioprinted DermaMatrix construct was seeded with muscle stem cells in vitro, and increased stem cell maintenance and repressed myogenic differentiation process was observed. DLL1 bioprinted DermaMatrix construct was then engrafted into dystrophic muscle of mdx/scid mice, and the improved cell engraftment and progression of muscle regeneration was observed 10 days after engraftment. Our results demonstrated that bioprinting of Notch activator within 3D construct can be applied to serve as muscle stem cell niche and improve the efficacy of muscle stem cell transplantation in diseased muscle.

12.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168155

RESUMO

Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population.

13.
Biochim Biophys Acta Gen Subj ; 1866(2): 130069, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906563

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are produced by all cell types and serve as biological packets delivering a wide variety of molecules for cell-to-cell communication. However, the biology of the EV extravesicular surface domain that we have termed EV 'biocorona' remains underexplored. Upon cell secretion, EVs possess an innate biocorona containing membrane integral and peripheral constituents that is modified by acquired constituents post secretion. This distinguishes EVs from synthetic nanoparticulate biomaterials that are limited to an adsorption-based, acquired biocorona. METHODS: The EV biocorona molecular constituents were radiolabeled with 125I to study biocorona constituents and its surface dynamics. As example toolset applications, 125I-EVs were utilized to study EV cell trafficking and the stability of the EV biocorona during storage. RESULTS: The biocorona of EVs consisted of proteins, lipids, DNA and RNA. The cellular uptake of 125I-EVs was temperature dependent and internalized 125I-EVs were rapidly recycled by cells. When 125I-EVs were stored in a purified state, they exhibited time and temperature dependent biocorona shedding and proteolytic degradation that was partially inhibited in the presence of serum. CONCLUSION: The EV biocorona is complex and dynamic. Radiolabeling of the EV biocorona enables a unique platform methodology to study the biocorona and will facilitate unlocking EV's full clinical translation potential. GENERAL SIGNIFICANCE: The EV biocorona affects EV mediated biological processes in health and disease. Acquiring knowledge of the EV biocorona composition, dynamics, stability and structure not only informs the diagnostic and therapeutic translation of EVs but also aids in designing biomimetic nanomaterials for drug delivery.


Assuntos
Vesículas Extracelulares
14.
Biomaterials ; 281: 121357, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999538

RESUMO

Nanoscale extracellular vesicles (EVs) represent a unique cellular derivative that reflect the therapeutic potential of mesenchymal stem cells (MSCs) toward tissue engineering and injury repair without the logistical and safety concerns of utilizing living cells. However, upon systemic administration in vivo,EVs undergo rapid clearance and typically lack controlled targeted delivery, thus reducing their effectiveness in therapeutic regenerative therapies. Here, we describe a strategy that enables long-term in vivo spatial EV retention by chemoselective immobilization of metabolically incoporated azido ligand-bearing EVs (azido-EVs) within a dibenzocyclooctyne-modified collagen hydrogel. MSC-derived azido-EVs exhibit comparable morphological and functional properties as their non-labeled EV counterparts and, when immobilized within collagen hydrogel implants via click chemistry, they elicited more robust host cell infiltration, angiogenic and immunoregulatory responses including vascular ingrowth and macrophage recruitment compared to ten times the higher dose required by non-immobilized EVs. We envision this technology will enable a wide range of applications to spatially promote vascularization and host integration relevant to tissue engineering and regenerative medicine applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Materiais Biocompatíveis , Hidrogéis , Medicina Regenerativa
15.
Adv Sci (Weinh) ; 9(27): e2201566, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35794454

RESUMO

Water is one of the most important elements for life on earth. Water's rapid phase-change ability along with its environmental and biological compatibility also makes it a unique structural material for 3D printing of ice structures reproducibly and accurately. This work introduces the freeform 3D ice printing (3D-ICE) process for high-speed and reproducible fabrication of ice structures with micro-scale resolution. Drop-on-demand deposition of water onto a -35 °C platform rapidly transforms water into ice. The dimension and geometry of the structures are critically controlled by droplet ejection frequency modulation and stage motions. The freeform approach obviates layer-by-layer construction and support structures, even for overhang geometries. Complex and overhang geometries, branched hierarchical structures with smooth transitions, circular cross-sections, smooth surfaces, and micro-scale features (as small as 50 µm) are demonstrated. As a sample application, the ice templates are used as sacrificial geometries to produce resin parts with well-defined internal features. This approach could bring exciting opportunities for microfluidics, biomedical devices, soft electronics, and art.


Assuntos
Microfluídica , Impressão Tridimensional , Água
16.
Acta Biomater ; 149: 198-212, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809788

RESUMO

Therapeutic benefits of curcumin for inflammatory diseases have been demonstrated. However, curcumin's potential as a clinical therapeutic has been hindered due to its low solubility and stability in vivo. We hypothesized that a hybrid curcumin carrier that incorporates albumin-binding and extracellular vesicle (EV) encapsulation could effectively address the current challenges of curcumin delivery. We further postulated that using dissolvable microneedle arrays (dMNAs) for local delivery of curcumin-albumin-EVs (CA-EVs) could effectively control skin inflammation in vivo. Mild sonication was used to encapsulate curcumin and albumin into EVs, and the resulting CA-EVs were integrated into tip-loaded dMNAs. In vitro and in vivo studies were performed to assess the stability, cellular uptake, and anti-inflammatory bioactivity of dMNA-delivered CA-EVs. Curcumin in CA-EVs exhibited at least five-fold higher stability in vitro than naïve curcumin or curcumin-EVs without albumin. Incorporating CA-EVs into dMNAs did not alter their cellular uptake or anti-inflammatory bioactivity. The dMNA embedded CA-EVs retained their bioactivity when stored at room temperature for at least 12 months. In rat and mice models, dMNA delivered CA-EVs suppressed and significantly reduced lipopolysaccharide and Imiquimod-triggered inflammation. We conclude that dMNA delivery of CA-EVs has the potential to become an effective local-delivery strategy for inflammatory skin diseases. STATEMENT OF SIGNIFICANCE: We introduce and evaluate a skin-targeted delivery system for curcumin that synergistically combines albumin association, extracellular-vesicle encapsulation, and dissolvable microneedle arrays (dMNAs) . In vitro, curcumin-albumin encapsulated extracellular vesicles (CA-EVs) inhibit and reverse the LPS-triggered expression of inflammatory transcription factor NF-κB. The integration of CA-EVs into dMNAs does not affect them physically or functionally. Importantly, dMNAs extend EV storage stability for at least 12 months at room temperature with minimal loss in their bioactivity. We demonstrate that dMNA delivered CA-EVs effectively block and reverse skin inflammation in vivo in mouse and rat models.


Assuntos
Curcumina , Vesículas Extracelulares , Albuminas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Curcumina/farmacologia , Inflamação/tratamento farmacológico , Camundongos , Ratos
17.
Acta Biomater ; 154: 108-122, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272687

RESUMO

Biological and mechanical cues are both vital for biomaterial aided tendon repair and regeneration. Here, we fabricated mechanically tendon-like (0 s UV) QHM polyurethane scaffolds (Q: Quadrol, H: Hexamethylene diisocyanate; M: Methacrylic anhydride) and immobilized them with Growth and differentiation factor-7 (GDF-7) to produce mechanically strong and tenogenic scaffolds. In this study, we assessed QHM polymer cytocompatibility, amenability to fibrin-coating, immobilization and persistence of GDF-7, and capability to support GDF-7-mediated tendon differentiation in vitro as well as in vivo in mouse subcutaneous and acute rat rotator cuff tendon resection models. Cytocompatibility studies showed that QHM facilitated cell attachment, proliferation, and viability. Fibrin-coating and GDF-7 retention studies showed that mechanically tendon-like 0 s UV QHM polymer could be immobilized with GDF-7 and retained the growth factor (GF) for at least 1-week ex vivo. In vitro differentiation studies showed that GDF-7 mediated bone marrow-derived human mesenchymal stem cell (hMSC) tendon-like differentiation on 0 s UV QHM. Subcutaneous implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in mice for 2 weeks demonstrated de novo formation of tendon-like tissue while implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in a rat acute rotator cuff resection injury model indicated tendon-like tissue formation in situ and the absence of heterotopic ossification. Together, our work demonstrates a promising synthetic scaffold with human tendon-like biomechanical attributes as well as immobilized tenogenic GDF-7 for tendon repair and regeneration. STATEMENT OF SIGNIFICANCE: Biological activity and mechanical robustness are key features required for tendon-promoting biomaterials. While synthetic biomaterials can be mechanically robust, they often lack bioactivity. To biologically augment synthetic biomaterials, numerous drug and GF delivery strategies exist but the large tissue space within the shoulder is constantly flushed with saline during arthroscopic surgery, hindering efficacious controlled release of therapeutic molecules. Here, we coated QHM polymer (which exhibits human tendon-to-bone-like biomechanical attributes) with fibrin for GF binding. Unlike conventional drug delivery strategies, our approach utilizes immobilized GFs as opposed to released GFs for sustained, localized tissue regeneration. Our data demonstrated that GF immobilization can be broadly applied to synthetic biomaterials for enhancing bioactivity, and GDF-7-immobilized QHM exhibit high clinical translational potential for tendon repair.


Assuntos
Polímeros , Lesões do Manguito Rotador , Ratos , Camundongos , Humanos , Animais , Poliuretanos/farmacologia , Anidridos , Tendões , Diferenciação Celular , Materiais Biocompatíveis , Lesões do Manguito Rotador/cirurgia , Alicerces Teciduais/química
18.
J Extracell Vesicles ; 10(12): e12155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34669267

RESUMO

Extracellular vesicles (EVs) are characterized by complex cargo composition and carry a wide array of signalling cargo, including growth factors (GFs). Beyond surface-associated GFs, it is unclear if EV intralumenal growth factors are biologically active. Here, bone morphogenetic protein-2 (BMP2), loaded directly into the lumen of EVs designated engineered BMP2-EVs (eBMP2-EVs), was comprehensively characterized including its regulation of osteoblastogenesis. eBMP2-EVs and non-EV 'free' BMP2 were observed to similarly regulate osteoblastogenesis. Furthermore, cell trafficking experiments suggest rapid BMP2 recycling and its extracellular release as 'free' BMP2 and natural occurring BMP2-EVs (nBMP2-EVs), with both being osteogenic. Interestingly, BMP2 occurs on the EV surface of nBMP2-EVs and is susceptible to proteolysis, inhibition by noggin and complete dissociation from nBMP2-EVs over 3 days. Whereas, within the eBMP2-EVs, BMP2 is protected from proteolysis, inhibition by noggin and is retained in EV lumen at 100% for the first 24 h and ∼80% after 10 days. Similar to 'free' BMP2, bioprinted eBMP2-EV microenvironments induced osteogenesis in vitro and in vivo in spatial registration to the printed patterns. Taken together, BMP2 signalling involves dynamic BMP2 cell trafficking in and out of the cell involving EVs, with distinct differences between these nBMP2-EVs and eBMP2-EVs attributable to the BMP2 cargo location with EVs. Lastly, eBMP2-EVs appear to deliver BMP2 directly into the cytoplasm, initiating BMP2 signalling within the cell, bypassing its cell surface receptors.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Masculino , Camundongos , Transdução de Sinais
19.
mBio ; 12(4): e0165721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253061

RESUMO

Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in pneumococcal infections. However, the effect of EVs on the host immune system remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by macrophages, T cells, and epithelial cells. In vitro, pEVs induce NF-κB activation in a dosage-dependent manner and polarize human macrophages to an alternative (M2) phenotype. In addition, pEV pretreatment conditions macrophages to increase bacteria uptake and such macrophages may act as a reservoir for pneumococcal cells by increasing survival of the phagocytosed bacteria. When administered systemically in mice, pEVs induce cytokine release; when immobilized locally, they recruit lymphocytes and macrophages. Taken together, pEVs emerge as critical contributors to inflammatory responses and tissue damage in mammalian hosts. IMPORTANCE Over the last decade, pathogen-derived extracellular vesicles (EVs) have emerged as important players in several human diseases. Therefore, a thorough understanding of EV-mediated mechanisms could provide novel insights into vaccine/therapeutic development. A critical question in the field is: do pathogen-derived EVs help the pathogen evade the harsh environment in the host or do they help the host to mount a robust immune response against the pathogen? This study is a step towards answering this critical question for the Gram-positive pathogen, Streptococcus pneumoniae. Our study shows that while S. pneumoniae EVs (pEVs) induce inflammatory response both in vitro and in vivo, they may also condition the host macrophages to serve as a reservoir for the bacteria.


Assuntos
Vesículas Extracelulares/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Streptococcus pneumoniae/imunologia , Animais , Feminino , Macrófagos/classificação , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Fenótipo , Infecções Pneumocócicas/imunologia , Transdução de Sinais/imunologia
20.
Stem Cells ; 26(1): 127-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901398

RESUMO

In vivo, growth factors exist both as soluble and as solid-phase molecules, immobilized to cell surfaces and within the extracellular matrix. We used this rationale to develop more biologically relevant approaches to study stem cell behaviors. We engineered stem cell microenvironments using inkjet bioprinting technology to create spatially defined patterns of immobilized growth factors. Using this approach, we engineered cell fate toward the osteogenic lineage in register to printed patterns of bone morphogenetic protein (BMP) 2 contained within a population of primary muscle-derived stem cells (MDSCs) isolated from adult mice. This patterning approach was conducive to patterning the MDSCs into subpopulations of osteogenic or myogenic cells simultaneously on the same chip. When cells were cultured under myogenic conditions on BMP-2 patterns, cells on pattern differentiated toward the osteogenic lineage, whereas cells off pattern differentiated toward the myogenic lineage. Time-lapse microscopy was used to visualize the formation of multinucleated myotubes, and immunocytochemistry was used to demonstrate expression of myosin heavy chain (fast) in cells off BMP-2 pattern. This work provides proof-of-concept for engineering spatially controlled multilineage differentiation of stem cells using patterns of immobilized growth factors. This approach may be useful for understanding cell behaviors to immobilized biological patterns and could have potential applications for regenerative medicine.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Diferenciação Celular/fisiologia , Engenharia Genética/métodos , Células-Tronco Multipotentes/citologia , Músculo Esquelético/citologia , Fator de Crescimento Transformador beta/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Linhagem da Célula , Células Cultivadas , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Camundongos , Células-Tronco Multipotentes/metabolismo , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA