Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Dermatol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602089

RESUMO

BACKGROUND: Erythropoietic protoporphyria (EPP) causes painful light sensitivity, limiting quality of life. Our objective was to develop and validate a wearable light exposure device and correlate measurements with light sensitivity in EPP to predict and prevent symptoms. METHODS: A wearable light dosimeter was developed to capture light doses of UVA, blue, and red wavelengths. A prospective observational pilot study was performed in which five EPP patients wore two light dosimeters for 3 weeks, one as a watch, and one as a shirt clip. RESULTS: Standard deviation (SD) increases from the mean in the daily blue light dose increased the odds ratio (OR) for symptom risk more than the self-reported outdoor time (OR 2.76 vs. 2.38) or other wavelengths, and a one SD increase from the mean in the daily blue light wristband device dose increased the OR for symptom risk more than the daily blue light shirt clip (OR 2.45 vs. 1.62). The area under the receiver operator curve for the blue light wristband dose was 0.78, suggesting 78% predictive accuracy. CONCLUSION: These data demonstrate that wearable blue light dosimetry worn as a wristband is a promising method for measuring light exposure and predicting and preventing symptoms in EPP.

2.
Sci Adv ; 8(23): eabo0537, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687686

RESUMO

Continuous health monitoring is essential for clinical care, especially for patients in neonatal and pediatric intensive care units. Monitoring currently requires wired biosensors affixed to the skin with strong adhesives that can cause irritation and iatrogenic injuries during removal. Emerging wireless alternatives are attractive, but requirements for skin adhesives remain. Here, we present a materials strategy enabling wirelessly triggered reductions in adhesive strength to eliminate the possibility for injury during removal. The materials involve silicone composites loaded with crystallizable oils with melting temperatures close to, but above, surface body temperature. This solid/liquid phase transition occurs upon heating, reducing the adhesion at the skin interface by more than 75%. Experimental and computational studies reveal insights into effects of oil mixed randomly and patterned deterministically into the composite. Demonstrations in skin-integrated sensors that include wirelessly controlled heating and adhesion reduction illustrate the broad utility of these ideas in clinical-grade health monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA